

INTERNATIONAL A-LEVEL MATHEMATICS

(9660)

Mark scheme

Pure mathematics Unit 2

Specimen

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Key to mark scheme abbreviations

М	Mark is for method				
m	Mark is dependent on one or more M marks and is for method				
Α	Mark is dependent on M or m marks and is for accuracy				
В	Mark is independent of M or m marks and is for method and accuracy				
Е	Mark is for explanation				
\checkmark or ft	Follow through from previous incorrect result				
CAO	Correct answer only				
CSO	Correct solution only				
AWFW	Anything which falls within				
AWRT	Anything which rounds to				
ACF	Any correct form				
AG	Answer given				
SC	Special case				
oe	Or equivalent				
A2, 1	2 or 1 (or 0) accuracy marks				
–x EE	Deduct x marks for each error				
NMS	No method shown				
PI	Possibly implied				
SCA	Substantially correct approach				
sf	Significant figure(s)				
dp	Decimal place(s)				

No method shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Answer		Marks	Comments
1(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) x^3 \times \frac{1}{x} + 3x^2 \ln x$		B2	B1 $px^3 \times \frac{1}{x} + qx^2 \ln x$ where <i>p</i> and <i>q</i> are integers
1(b)(i)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \mathrm{e}^2 + 3\mathrm{e}^2 \ln \mathrm{e} (= 4e^2)$		M1	p = 1, q = 3 Substituting e for x in their $\frac{dy}{dx}$, but must have scored B1 in (a)
	$y = e^3 \ln e \ (= e^3)$		B1	oe but must have evaluated In e (twice) for this mark (must be in exact form, but condone numerical evaluation after correct equation)
	$y - e^3 = 4e^2(x - e)$		A1	
1(b)(ii)	$-e^3 = 4e^2(x-e)$ or $4e^2x = 3e^3$		M1	oe correctly substituting $y = 0$ into a correct tangent equation in (b)(i)
	$x = \frac{3}{4}e$		A1	CSO; ignore subsequent decimal evaluation
		Total	7	

Q	Answer	Marks	Comments
2(a)(i)	Alternative method 1		
	5x - 6 = A(x - 3) + Bx	M1	Multiply by denominator and use two values of x
	$x = 0 \qquad x = 3$ $A = 2 \qquad B = 3$	A1	Set up and solve simultaneous equations for values of A and B
	Alternative method 2	1	
	$-6 = -3A \qquad 5 = A + B$	M1	
	$A = 2 \qquad B = 3$	A1	
2(a)(ii)	$\left(\int \frac{2}{x} + \frac{3}{x-3} dx = \right) 2 \ln x$	B1ft	Their A In x
	+ 3 ln(x - 3) (+ <i>C</i>)	B1ft	Their <i>B</i> In $(x - 3)$ and no other terms; condone <i>B</i> In $x - 3$
2(b)(i)	Alternative method 1	1	
	$2x + 1) \overline{4x^{3} + 5x - 2}$ $4x^{3} + \frac{2x^{2}}{-2x^{2}} + 5x$ $-2x^{2} - \frac{x}{6x - 2}$ $6x + \frac{3}{-5}$	M1	Division as far as $2x^2 + px + q$ with, $p \neq 0$, $q \neq 0$ PI
	p = -1	A1	PI by $2x^2 - x + q$ seen
	<i>q</i> = 3	A1	PI by $2x^2 - x + 3$ seen and must state $p = -1$, $q = 3$,
	<i>r</i> = -5	A1	r = -5 explicitly or write out full correct RHS expression

Q	Answer	Marks	Comments
2(b)(i)	Alternative method 2		
	$4x^{3} + 5x - 2 =$ $4x^{3} + (2 + 2p) x^{2} + (p + 2q) x + q$ $2 + 2p = 0$ $p + 2q = 5$ $q + r = -2$	M1	Clear attempt to equate coefficients, PI by $p = -1$
	p = -1	A1	
	q = 3	A1	
	<i>r</i> = -5	A1	
2(b)(i)	Alternative method 3	1	
	$4x^{3} + 5x - 2 = (2x + 1)(2x^{2} + px + q) + r$ $x = -\frac{1}{2} \qquad 4 \times \left(-\frac{1}{2}\right)^{3} + 5\left(-\frac{1}{2}\right) + 2 = r$	M1	$x = -\frac{1}{2}$ used to find a value for r
	<i>r</i> = -5	A1	
	p = -1	A1	
	q = 3	A1	
2(b)(ii)	$\left(\frac{4x^3 + 5x - 2}{2x + 1}\right) 2x^2 + px + q + \frac{r}{2x + 1}$	M1	ft on p and q
	$\frac{2}{3}x^3 - \frac{1}{2}x^2 + 3x + k\ln(2x + 1)$ (+ C)	A1ft	
	$\frac{2}{3}x^3 - \frac{1}{2}x^2 + 3x + \frac{5}{2}\ln(2x+1)$ (+ C)	A1	CSO
	Total	11	

Q	Answer		Marks	Comments
3(a)	$R = \sqrt{10}$		B1	Accept 3.2 or better Can be earned in (b)
	$\tan \alpha = -3$		M1	oe; M0 if tan $\alpha = -3$ seen
	$\alpha = 71.6^{\circ}$ or better		A1	$\alpha =$ 71.56505
3(b)	$\sin(x \pm \alpha) = \frac{-2}{R}$		M1	or their <i>R</i> and/or their α ; PI
	<i>x</i> (= -39.2 + 71.6) = 32(.333)		A1	32 or better
	or			condone 32.4
	<i>x</i> - 71.6 = 219.2		m1	must see 219 and 72 or better
				PI by 291 or better as answer
				condone extra solutions
	x = 291°			condone 290.8 or better CSO
			A1	withhold final A1 if more than two answers given within interval
L		Total	7	

Q	Answer		Marks	Com	ments
4(a)			M1	$f(x) > 0, f \ge 0, x \ge 0,$	$y > 0$, range ≥ 0
	$f(x) \ge 0$		A1	condone $y \ge 0$	
4(b)(i)	$fg(x) = \sqrt{2\left(\frac{10}{x}\right) - 5}$ $\left(=\sqrt{\frac{20}{x} - 5}\right) OE$		B1	No ISW	
4(b)(ii)	$\sqrt{\frac{20}{x}-5}=5$		M1	correctly squaring th	heir f $g(x)$
	$\frac{20}{x} = 5^2 + 5$			correctly isolating th	eir x term
	$x = \frac{2}{3}$		A1	No ISW	
4(c)(i)			M1	Swap x and y	Fither order
	$y = \sqrt{2x - 5}$		M1	Correct squaring	Either order
	$(f^{-1}(x) =) \frac{x^2 + 5}{2}$		A1		
4(c)(ii)	$x^2 = 9$ or if $\sqrt{9}$ or 3 seen		M1	Candidate must hav in (c)(i)(ie no follow t	
	x = 3 and $x = -3$ rejected		A1	must see both	
		Total	10		

Q	Answer	Marks	Comments
5(a)(i)	$(1-x)^{\frac{1}{3}} = 1 - \frac{1}{3}x$	M1	condone $1^{\frac{1}{3}} + -\frac{1}{3}x$ for M1
	$= 1 - \frac{1}{3}x - \frac{1}{9}x^2$	A1	must simplify coefficients including signs
5(a)(ii)	Alternative method 1		
	$(125 - 27x)^{\frac{1}{3}} = 125^{\frac{1}{3}} \left(1 - \frac{27}{125}x\right)^{\frac{1}{3}}$ $\left(1 - \frac{27}{125}x\right)^{\frac{1}{3}} = \left(1 - \frac{1}{3} \times \frac{27}{125}x - \frac{1}{9}\left(\frac{27}{125}x\right)^{2}\right)$	M1	May have 5 instead of $125^{\frac{1}{3}}$ Attempt to replace <i>x</i> by $\pm \frac{27}{125}x$ condone missing brackets, or start binomial again.
	$=5-\frac{9}{25}-\frac{81}{3125}x^2$	A2	Condone $5 + \frac{-9}{25}x + \frac{-81}{3125}x^2$
	Alternative method 2 using $(a + bx)^n$		
	$(125 - 27x)^{\frac{1}{3}} = 125^{\frac{1}{3}} + \frac{1}{3} \times 125^{-\frac{2}{3}} \times (-27x)$ $+ \frac{1}{3} \left(-\frac{2}{3}\right)^{\frac{1}{2}} \times 125^{-\frac{5}{3}} \times (-27x)$	(M1)	Allow one error; condone missing brackets
	$=5-\frac{9}{25}-\frac{81}{3125}x^2$	(A2)	
5(b)	$x = \frac{2}{9}$ used in answer to (a)(ii)	M1	
	$\sqrt[3]{119} \approx 5 - \frac{9}{25} \times \frac{2}{9} - \frac{81}{3125} \left(\frac{2}{9}\right)^2$ = 4.91872	A1	Condone $\frac{6}{27}$ or $x = 0.222$ or better This answer only and must follow from correct expansion
	Total	7	

Q	Answer	Marks	Comments
6(a)(i)	$(\sin^{-1} \pm 0.25 =) \pm 14.5$	M1	PI by sight of 194.5 etc condone 14.4
	$\theta = 194.5^{\circ}, 345.5^{\circ}$	A1	no extras in interval, ignore answers outside interval
6(a)(ii)	$2\cot^{2}(2x + 30) = 2 - 7\csc(2x + 30)$ $2(\csc^{2}(2x + 30) - 1) = 2 - 7\csc(2x + 30)$	M1	condone replacing $2x + 30$ by Y correct use of $cosec^2Y = 1 + cot^2Y$
	$2 \operatorname{cosec}^2(2x + 30) + 7 \operatorname{cosec}(2x + 30) - 4 (= 0)$	A1	must be in this form
	$2 \operatorname{cosec}(2x + 30) \pm 1)(\operatorname{cosec}(2x + 30) \pm 4)(= 0)$	M1	
	$\csc(2x + 30) = \frac{1}{2}$ or -4	A1	attempt at factorisation must be in line using f $(2x + 30)$
	2x + 30 = 194.5, 345.5	B1	one correct answer, allow 82.3, ignore extra solutions
	<i>x</i> = 82.2°, 157.8°	B1	CAO both answers correct and no extras in interval, ignore answers outside interval

Q	Answer		Marks	Comments			
6(b)	Alternative method 1						
	stretch (I)		M1	I and either II or III			
	scale factor $\frac{1}{2}$ (II)		A1				
	parallel to <i>x</i> -axis (III)		E1	I + II + III			
	translate $\begin{bmatrix} -15\\ 0 \end{bmatrix}$		B1	Condone '15 to left' or '-15 in x (direction)'			
	Alternative method 2						
	translate $\begin{bmatrix} -30\\ 0 \end{bmatrix}$		(E1)				
	stretch (I)		(B1)				
	scale factor $\frac{1}{2}$ (II)		(M1)	as above			
	parallel to <i>x</i> -axis (III)		(A1)	as above			
		Total	12				

Q	Answer		Marks	Comments
7(a)	$\int x e^{6x} dx$		M1	All 4 terms in this form, $k = \frac{1}{6}$, 1 or 6
	$u = x \frac{dv}{(dx)} = e^{6x}$ $\frac{du}{(dx)} = 1 v = ke^{6x}$		A1	
	$\frac{1}{6}xe^{6x} - \int \frac{1}{6}e^{6x} (\mathrm{d}x)$		A1ft	Correct substitution of their terms into parts
	$=\frac{1}{6}xe^{6x}-\frac{1}{36}e^{6x}(+c)$		A1	oe No ISW for incorrect simplification
7(b)	$(V =) \pi \int_{0}^{1} x e^{6x} dx$		B1	Must include π , limits and dx
	$= (\pi) \left[\left(\frac{1}{6} e^{6} - \frac{1}{36} e^{6} \right) - \left(-\frac{1}{36} \right) \right]$		M1	Correct substitution of 0 and 1 into their answer in (a), must be of the form $axe^{6x} - be^{6x}$, where $a > 0$, $b > 0$ and F(I) - F(0) seen
	$= (\pi) \left[\frac{5}{36} e^6 + \frac{1}{36} \right]$		A1	CAO; ISW
		Total	7	

Q	Answer	Marks	Comments
8(a)(i)	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) - 6\sin 2\theta, \qquad \left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) - 2\sin \theta$	M1	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) p \sin 2\theta \text{ or } r \sin \theta \cos \theta$ $\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) q \sin \theta$
		A1	Both correct
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2\mathrm{sin}\theta}{-6\mathrm{sin}2\theta}$	M1	Use chain rule $\frac{dy}{d\theta}$; $\frac{dx}{d\theta}$ condone one slip
	$=\frac{2\sin\theta}{6\times2\sin\theta\cos\theta}=\frac{1}{6\cos\theta}$	A1	k = 6 must come from correct working seen AG
8(a)(ii)	$\theta = \frac{\pi}{3}$ $m_T = \frac{1}{3}$	B1ft	ft on $k \left(\frac{1}{k \times \frac{1}{2}}\right)$ k need not be numerical
	$m_{\rm N} = -3$	B1ft	ft on m _T
	$(x, y) = \left(-\frac{3}{2}, 1\right)$	B1	
	Normal $y - 1 = -3\left(x + \frac{3}{2}\right)$	B1	CAO; any correct form, ISW 2y + 6x + 7 = 0

Q	Answer	Marks	Comments		
8(b)	Alternative method 1				
	$\sin^2 x = \frac{1}{2} (1 - \cos 2x)$	M1 A1	$p + q \cos 2x$; allow different letters for x or mixture eg θ even for A1 and the following A1ft		
	$\int p dx = px \qquad \int q \cos 2x = \frac{1}{2}q \sin 2x$ $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 dx = \left[\frac{x}{2} - \frac{1}{4}\right] \sin 2x$	A1ft	Both integrals correct ft on p and q		
	$=\left(\frac{\pi}{8}-\frac{1}{4}\right)-\left(-\frac{\pi}{8}-\left(-\frac{1}{4}\right)\right)$	m1	Correct use of limits $F\left(\frac{\pi}{4}\right) - F\left(-\frac{\pi}{4}\right) \text{ or } 2F\left(\frac{\pi}{4}\right)$ $F(x) = px + r\sin 2x \text{ and } \sin \frac{\pi}{2}$ $\sin\left(-\frac{\pi}{2}\right) \text{ must be evaluated correctly}$ for m1		
	$=\frac{\pi}{4}-\frac{1}{2}$	A1	CSO oe ISW		
	Alternative method 2				
	$\int \sin^2 x dx = -\sin x \cos x - \int -\cos x \cos x dx$	M1	Use parts; condone sign slips		
	$= -\sin x \cos x + \int 1 - \sin^2 x \mathrm{d}x$	m1	Use $\cos^2 x = 1 \sin^2 x$		
	$2\int \sin^2 dx = -\sin x \cos x + x$	A1			
	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 dx = G\left(\frac{\pi}{4}\right) - G\left(-\frac{\pi}{4}\right)$	m1	Correct use of limits		
	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 dx = \frac{\pi}{4} - \frac{1}{2}$	A1			
	Total	13			

Q	Answer	Marks	Comments
9	$9x^2 - 6xy + 4y^2 = 3$ $18x = 0$	B1	= 0 PI
	$-6y - 6x \frac{\mathrm{d}y}{\mathrm{d}x}$	B1	or $\frac{d(6xy)}{dx} = 6y + 6x\frac{dy}{dx}$ seen separately
	$+ 8y \frac{\mathrm{d}y}{\mathrm{d}x}$	B1	$\frac{\mathrm{d}y}{\mathrm{d}x}(-6x+8y) = 6y - 18x$
	Use $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	
	$\Rightarrow y = 3x \text{ or } x = \frac{y}{3}$	A1	CSO
	$y = 3x \Longrightarrow 9x^2 - 6x \times 3x + 4(3x)^2 = 3$	m1	Substitute $y = ax$ into equation and solve for a value of x or y. Condone missing brackets.
	$27x^2 = 3 \Longrightarrow x = \pm \frac{1}{3} \qquad \text{OE}$	A1ft	oe Both values of x or y required. ft on their $y = 3x$
	$\left(\frac{1}{3},1\right)$ $\left(-\frac{1}{3},-1\right)$	A1	CSO Correct corresponding simplified values of <i>x</i> and <i>y</i> Withhold A1 for any additional answers
	Total	8	given

Q	Answer		Marks	Comments	
10(a)(i)	1000 × 1.03 ⁵ ≈ (£)1160		B1	condone missing £ sign; 1160 only	
10(a)(ii)	$2000 < 1000 \left(1 + \frac{3}{100}\right)^n$		B1	condone '=' or '<' used throughout take logs, any base, of their initial	
	ln 2 < <i>n</i> ln 1.03		M1	expression correctly	
	(<i>n</i> > 23.499) (<i>N</i> =) 24		A1	condone 23	
10(b)	$1000 \times \left(1 + \frac{3}{100}\right)^n > 1500 \times \left(1 + \frac{1.5}{100}\right)^n$ $\ln 1000 + n \ln 1.03 > \ln 1500 + n \ln 1.015$ $n > \frac{\ln(1.5)}{\ln\left(\frac{1.03}{1.015}\right)}$		B1	condone use of <i>T</i> for <i>n</i> condone '=' or '<' used throughout	
			M1	take logs, any base, of their initial expression correctly	
			A1	correct expression for n or T	
	(<i>n</i> > 27.63) (<i>T</i> =) 28		A1	condone 27	
		Total	8		

Q	Answer	Marks	Comments
11(a)	$\overrightarrow{AB} = \begin{bmatrix} 4\\-1\\3 \end{bmatrix} - \begin{bmatrix} 5\\1\\-2 \end{bmatrix} = \begin{bmatrix} -1\\-2\\5 \end{bmatrix}$	B1	$\pm \left(\overrightarrow{OA} - \overrightarrow{OB} \right)$ Coordinate form only is B0 Condone one component incorrect
	Line through A and B	M1	$\overrightarrow{OA} + \lambda \mathbf{d}$ or $\overrightarrow{OB} + \lambda \mathbf{d}$ where $\mathbf{d} = \overrightarrow{AB}$ or \overrightarrow{BA} all in components and identified
	$\mathbf{r} = \begin{bmatrix} 5\\1\\-2 \end{bmatrix} + \lambda \begin{bmatrix} -1\\-2\\5 \end{bmatrix} \text{ or}$ $\mathbf{r} = \begin{bmatrix} 4\\-1\\3 \end{bmatrix} + \lambda \begin{bmatrix} -1\\-2\\5 \end{bmatrix}$	A1	oe r or $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ required
11(b)(i)	$5 - \lambda = -8 + 5\mu$ $1 - 2\lambda = 5$ $-2 + 5\lambda = -6 - 2\mu$	M1	Clear attempt to set up and solve at least two simultaneous equations in μ and a different parameter Allow in column vector form
	$\lambda = -2$ $\mu = 3$	A1	One of λ or μ correct oe
	$-2 + 5 \times -2 = -12$ $-6 - 2 \times 3 = -12$ Both equal -12 so intersect	E1	Verify intersect, λ and μ correct or verify (7, 5, -12) is on both lines statement required
	<i>P</i> is (7, 5, –12)	B1	САО

Q	Answer		Marks	Comments
11(b)(ii)	11(b)(ii) $\overrightarrow{BC} = \begin{bmatrix} -8 + 5\mu \\ 5 \\ -6 - 2\mu \end{bmatrix} - \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix}$		M1	$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$ or $\overrightarrow{CB} = \overrightarrow{OB} - OC$
	$\begin{bmatrix} 3 \\ 6 \\ -15 \end{bmatrix} \bullet \overrightarrow{BC} = 0$ -36 + 15\mu + 36 + 135 + 30\mu = 0)	M1 m1	Clear attempt at $\pm \overrightarrow{BP}$ or $\pm \overrightarrow{AB}$ or $\pm \overrightarrow{AB}$ or $\pm \overrightarrow{AP}$ in components sp with $\overrightarrow{BC} = 0$ Linear equation in μ using their \overrightarrow{BC} and solved for μ Condone one arithmetical or sign slip
	$\mu = -3$		A1	
	C is (-23, 5, 0)		A1	CSO
		Total	12	

Q	Answer	Marks	Comments
12(a)	$\frac{\mathrm{d}h}{\mathrm{d}t}$	B1	Use of 2 – h
	$derivative = * \times (2 - h)$	M1	Is a constant or expression in h and / or t
			All correct; must be $(2 - h)$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = k \left(2 - h\right)$	A1	
12(b)(i)	Alternative method 1		
	$\int x \sqrt{2x - 1} \mathrm{d}x = \int \frac{1}{15} \mathrm{d}t$	B1	Correct separation and notation; condone missing integral signs
	$=\frac{1}{15}t$	B1	
	Substitute $u = 2x - 1$	M1	Suitable substitution and attempt to write integral in terms of <i>u</i> including dx replaced by $\frac{1}{2}$ or 2 d <i>u</i>
	$\int x \sqrt{2x - 1} \mathrm{d}x = \int \frac{1}{2} (u + 1) \sqrt{u} \frac{1}{2} \mathrm{d}u$	A1	$\frac{1}{4}$ need not be seen
	$=\left(\frac{1}{4}\right)\int u^{\frac{3}{2}} + u^{\frac{1}{2}}$	A1	
	$= \frac{1}{4} \left(\frac{2}{5} u^{\frac{5}{2}} + \frac{2}{3} u^{\frac{3}{2}} \right) (+C)$ x = 1, t = 0	M1	Integration correct including $\frac{1}{4}$
	$u = 1, t = 0$ $\frac{1}{4} \left(\frac{2}{5} + \frac{2}{3} \right) + C = 0$	A1	Use $x = 1$, $t = 0$ to find a value for constant C from equation in x and t
	$C = -\frac{4}{15}$ $t = \frac{1}{2} \left(3(2x-1)^{\frac{5}{2}} + 5(2x-1)^{\frac{3}{2}} \right) - 4$	A1	C = -0.2666 C = -0.267 or better ISW $t = (2x - 1)^{\frac{3}{2}} (3x + 1) - 4$

Q Answer Marks Comme	ents
----------------------	------

12(b)(i)	Alternative method 2			
	$\int x \sqrt{2x - 1} \mathrm{d}x = \int \frac{1}{15} \mathrm{d}t$		B1	
	$=\frac{1}{5}t$		B1	
	$u = x, \ \frac{dy}{dx} (2x - 1)^{\frac{1}{2}}$ $du = 1 v = k (2x - 1)^{\frac{3}{2}}$		M1	
	$\int x \sqrt{2x-1} \mathrm{d}x = x \frac{1}{3} (2x-1)^{\frac{3}{2}} - \int \frac{1}{3}$	$\frac{1}{3}(2x-1)^{\frac{3}{2}} dx$	A1	Attempts to use parts
	$= x\frac{1}{3}(2x-1)^{\frac{3}{2}} - \frac{1}{15}(2x-1)^{\frac{5}{2}} (+C)$		A1	Condone missing dx
	$x = 1, t = 0$ $\frac{1}{3} - \frac{1}{15} + C =$	= 0	M1	Use $x = 1$, $t = 0$ to find a value for constant <i>C</i> from an equation in <i>x</i> and <i>t</i>
	$C = -\frac{4}{15}$		A1	
	$t = 5x(2x - 1)^{\frac{3}{2}} - (2x - 1)^{\frac{5}{2}} - 4$		A1	C = -0.2666 C = -0.267 or better $ISW t = (2x - 1)^{\frac{3}{2}}(3x + 1) - 4$
12(b)(ii)	x = 2 $t = 32.4$ (minutes)		B1	32.4 or better (32.373)
		Total	12	

Q	Answer	Mark	ks Comments
13	$u = x^4 + 2$ $\frac{\mathrm{d}u}{\mathrm{d}x} = 4x^3$	B1	or $du = 4x^3 dx$
	$\int \frac{x^{7}}{(x^{4} + 2)^{2}} dx$	M1	Either expression all in terms of u including replacing dx, but condone omission of du
	$\int \frac{k(u-2)}{u^2} du \text{ or } \int \frac{k(u-2)^{\frac{7}{4}}}{u^2} \frac{du}{(u-2)^{\frac{3}{4}}}$ $= \left(\frac{1}{4}\right) \int \frac{1}{u} - \frac{2}{u^2} du$	m1	$k \int au^{-1} + bu^{-2} du$ where k , a and b are constants
	$= \left(\frac{1}{4}\right) \left[\ln u + \frac{2}{u}\right]$ $\left(\int = \left(\frac{1}{4}\right) \left[\ln u + \frac{2}{u}\right]_{2}^{3}\right)$	A1	Must have seen d <i>u</i> on an earlier line where every term is a term in <i>u</i> $\left(\left(\frac{1}{4}\right)\left[\ln\left(x^4+2\right)+\frac{2}{\left(x^4+2\right)}\right]_0^1\right)$
	$=\left(\frac{1}{4}\right)\left[\left(\ln 3+\frac{2}{3}\right)-\left(\ln 2+1\right)\right]$	m1	Dependent on previous A1 Correct change of limits, correct substitution and $F(3) - F(2)$ or Correct replacement of u, correct substitution and $F(1) - F(0)$
	$=\frac{1}{4}\ln\left(\frac{3}{2}\right)-\frac{1}{12}$	A1	oe in exact form
	Total	6	

GET HELP AND SUPPORT

Visit our website for information, guidance, support and resources at oxfordaqaexams.org.uk

You can contact the English subject team directly at:

E: english@oxfordaqaexams.org.uk

OXFORD INTERNATIONAL AQA EXAMINATIONS LINACRE HOUSE, JORDAN HILL, OXFORD, OX2 8TA UNITED KINGDOM enquiries@oxfordaqaexams.org.uk oxfordaqaexams.org.uk