

INTERNATIONAL A-LEVEL MATHEMATICS

(9660)

Mark scheme

Statistics Unit 2

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
Е	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
oe	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
–x EE	Deduct x marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)

No method shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Answer		Marks	Comments
1(a)	$H_0: \mu = 35$			
	$H_1: \mu \neq 35$			
	2 - tail test, 1% sig. level		B1	
	under H_0 , $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$			
	$\overline{X} \sim N\left(35, \frac{144}{100}\right)$		B1	
	$z = \frac{37.9 - 35}{1.2}$		M1	$z = \frac{37.9 - 35}{\text{their } \sigma / \sqrt{n}}$
	<i>z</i> = 2.42		A1ft	On their σ/\sqrt{n}
	$z_{crit} = \pm 2.5758$		B1	
	do not reject H ₀		A1ft	On their <i>z</i>
	Evidence to support the claim th mean age is 35 years	at the	E1ft	
1(b)	Accept H ₀ when H ₀ false			Allow B1 if not in context
	Accepting the mean to be 35 years when it isn't		B2	
		Total	9	

Q	Answer		Marks	Comments
2(a)	F(t) = $\int_0^t 5e^{-5t} dt = \left[-e^{-5t}\right]_0^t$		M1A1	If result quoted without proof award B1
	$= 1 - e^{-5t} \qquad t \ge 0$		A1	Incorrect notation A0, unless recovery is clear
	F(t) = 0 otherwise, or $t < 0$		B1	Need not see $t \ge 0$ for A1
2(b)	$e^{-5c} = 0.05 \Longrightarrow e^{5c} = 20$		M1	Accept 0.6
	$\Rightarrow c = \frac{1}{5} \ln 20 \qquad (0.599)$		A1	Some attempt to simplify a logarithmic answer is required
		Total	6	

Q	Answer	Marks	Comments
3(a)	$\frac{Y \sim N(25.25, 0.35^2)}{V(\text{mean}) = \frac{0.352}{10}} \text{ or } \underline{0.0122 \text{ to } 0.0123}$		Accept percentage equivalent probabilities
	or	B1	CAO/AWFW (0.01225)
	SD (mean) = $\frac{0.352}{\sqrt{10}}$ or <u>0.11</u> to <u>0.111</u>		CAO/AWFW (0.11068)
	$P(\overline{Y} < 25) = P\left(Z < \frac{25 - 25.25}{0.35/\sqrt{10}}\right)$	M1	Standardising 25 using 25.25 and $0.35/\sqrt{10}$ oe but allow (25.25 – 25) Correct area change
	= P(Z < -2.25877) = 1 – P(Z < 2.25877) = 1 – (0.98809 to 0.98778)	m1	May be implied by a correct answer or an answer < 0.5
	= <u>0.011</u> to <u>0.013</u>	A1	AWFW (0.01195) $(0.987 \text{ to } 0.989) \Rightarrow$ B1 M1 m0 A0
3(b)	$P(Y > 25) = P\left(Z > \frac{25 - 25.25}{0.35}\right)$ $= P(Z > -0.71429) = P(Z < 0.71429)$	M1	Standardising 25 using 25.25 and 0.35 but allow (25.25 – 25)
	= <u>0.761</u> to <u>0.764</u>	A1	AWFW (0.76247) (0.236 to 0.239) \Rightarrow M1 A0 Any p^{10} providing 0 < p < 1
	P(Y > 25 in each of 10) = <u>p</u> ¹⁰	M1	May be implied by a correct answer
	= <u>0.065</u> to <u>0.068</u>	A1	AWFW (0.06641)
	Total	8	

Q	Answer		Marks	Comments
			1	
4(a)	μ = 128 ÷ 40 = 3.2 as required for	or λ	B1	
	$s^2 = 3.2410$ (Condone $\sigma^2 = 3$	3.16)	B1	AWRT 3.24 or 3.16
	Which is close to λ , as required for Poisson	or	E1	Clearly stated (for either s ² or σ^2)
4(b)(i)	$1 - P(X \le 5) = 1 - 0.8946$		M1	For attempt to subtract $P(X \ge 5)$
	= 0.105(4)		A1	AWRT
4(b)(ii)	$1 - P(X \le 7) - P(X \le 2)$		M1	Attempt to use these two
	0.9832 – 0.3799		B1	For either
	= 0.603(3)		A1	AWFW 0.603 to 0.604
4(b)(iii)	$1 - P(X \le 5) = 1 - (b)(i)$ or 0.894 to 0.895 P (both) = $[1 - (b)(i)]^2$ or $[0.894$ to $0.895]^2$		M1	
	= 0.800		A1	AWFW 0.799 to 0.801
4(c)	Using Po(8.2)		M1	Stated or use in formula or either of figures stated below seen
	$e^{-8.2} \times 8.2^9 \div 9! + e^{-8.2} \times 8.2^{10} \div 10!$		m1	Or Calc P(≤ 10) – P(≤ 8) = 0.79555 – 0.56465
	= 0.231		A1	AWRT
		Total	13	

Q	Answer		Marks	Comments
5	H ₀ : <i>p</i> = 0.50		B1	
	H ₁ : <i>p</i> > 0.50		B1	
	P(<i>X</i> ≥ 29 B(50, 0.50) =		M1	Use of B(50, 0.50); may be implied
	1 – (0.8389 or 0.8987)		M1	AWFW (0.16112)
	= 0.16 to 0.165		A1	
	No evidence to support the claim		A1ft	ft on 10% and (p-value > 0.10)
				Definitive conclusion \Rightarrow A0ft
	·	Total	6	

Q	Answer		Marks	Comments
6(a)(i)	Volume <i>V</i> ~ N (412, 8 ²)			Standardising 400 with 412 and 8
	$P(V < 400) = P\left(Z < \frac{400 - 412}{8}\right)$		M1	
	= P(Z < -1.5) = 1 - P(Z < 1.5)			Area change
			M1	May be implied by correct answer or an answer < 0.5
	= 1 - 0.93319 = 0.066 to 0.067		A1	AWFW (0.06681)
6(a)(ii)	P(V > 420) = P(Z > 1)		B1	CAO but ignore inequality and sign May be implied by a correct answer
	-1 D(7 < 1) -1 0.04124			Δ\WF\W (0 15866)
	= 1 - P(Z < 1) = 1 - 0.64134 = 0.158 to 0.159		B1	AWFW (0.13800)
6(a)(iii)	P(V = 410) = 0 or zero			Ignore any working
			B1	B0 for 'impossible to calculate' or 'no answer'
6(b)(i)	A statement/indication that			Simple statement that $z = \pm 1.6449$
	(-) 1.6449 and/or 2.3263 are <i>z</i> -va	alues		and/or $z = \pm 2.3263$
	Do not allow ϕ (0.99) = 2.3263, ϕ allow ϕ^{-1} (0.99) = 2.3263	, etc but B1		or sketch of normal curve with at least one <i>z</i> -value marked
	Do not award for <i>z</i> -value(s) simpl embedded in standardisation stat	y tement(s)		
	A clear use of $z = \frac{v - \mu}{v - \mu}$ or $v = \frac{v - \mu}{v - \mu}$	$\mu + z \sigma$		SC immediate algebraic use of
	with 400 and/or 420 (condone sig	gn errors)	IVIT	$v - \mu = z\sigma \Rightarrow BT MT AU$
	The two given equations correctly	y derived	A1	AG; watch for sign inconsistencies
6(b)(ii)	ii) Thus 20 = (2.3262 + 1.6449) σ			A sensible (one that would lead to
			M1	attempt at solving the two given
				equations by eliminating μ or σ Do not allow MC or MR
	$\sigma = 5.04$		A1	AWRT (5.03626)
	u = 408		A1	AWRT (408.284)
	· ·	Total	40	
		rotar	12	

Q	Answer		Marks	Comments
				r
7(a)	Putting $\frac{t^3}{216} = 0.9$		M1	
	<i>t</i> = 5.793		A1	5.79 to 5.80
	41 days		A1	Accept 40 days in this context
7(b)	Attempt to differentiate $F(t)$		M1	ct^2 seen
	$f(t) = \frac{1}{72}t^2, \ 0 \le t \le 6$		A1	Condone domain missing here
	= 0 otherwise		A1	For complete function
7(c)	Attempt to integrate $tf(t)$ from 0	to 6	M1	Using their $f(t)$ from (b) ct^4 seen
	E(T) = 4.5		A1	
	Attempt to integrate $t^2 f(t)$ from 0) to 6	M1	Using their $f(t)$ from (b) ct^5 seen
	$E(T^2) = 21.6$		A1	
	$Var(T) = E(T^2) - (E(T))^2$		m1	Applied in this case
				Dependent on both M1
	$= 21.6 - 4.5^2 = 1.35$		A1	
7(d)	s.d. = $\sqrt{1.35} = 1.162$		M1	For $\sqrt{\text{(their Var) } 0 < \text{Var}(T) < 9}$
	Use of F(5.662)		m1	For F(their s.d. + their E(T)) provided 0 < Total < 6
	$1 - \frac{5.662^3}{216}$		m1	
	= 0.160		A1	AWFW 0.159 to 0.161
		Total	16	

Q	Answer		Marks	Comments
8	H ₀ : μ = 568			$X \sim \text{contents of cartons of milk}$
	$H_1 : \mu < 568$		B1	$X \sim N(568, \sigma^2)$
	1% one-tailed test			Under $H_0: \overline{X} \sim N\left(568, \frac{\sigma^2}{n}\right)$
	<i>v</i> = 7		B1	
	$\overline{x} = \frac{4510}{8} = 563.75$		B1	
	$\Rightarrow s^{2} = \frac{254256.8}{7} - \frac{8}{7} (563.75)^{2}$ $s^{2} = 7.929$		B2	(<i>s</i> = 2.816)
	$t = \frac{563.75 - 568}{2.816/\sqrt{8}}$		M1	
	<i>t</i> = -4.27		A1ft	
	$t_{crit} = -2.998$		B1ft	
	reject H ₀		A1ft	On their t
	Evidence at the 1% level of sign to suggest that the average cont the cartons has been reduced	ificance ents of	E1ft	
		Total	10	

GET HELP AND SUPPORT

Visit our website for information, guidance, support and resources at oxfordaqaexams.org.uk

You can contact the English subject team directly at:

E: english@oxfordaqaexams.org.uk

OXFORD INTERNATIONAL AQA EXAMINATIONS LINACRE HOUSE, JORDAN HILL, OXFORD, OX2 8TA UNITED KINGDOM enquiries@oxfordaqaexams.org.uk oxfordaqaexams.org.uk