OXFORD

INTERNATIONAL AQA EXAMINATIONS

Mark scheme

Mechanics Unit 2

Specimen

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Key to mark scheme abbreviations

M Mark is for method
m Mark is dependent on one or more M marks and is for method
A Mark is dependent on M or m marks and is for accuracy
B Mark is independent of M or m marks and is for method and accuracy
E Mark is for explanation
\checkmark or ft Follow through from previous incorrect result
CAO Correct answer only
CSO Correct solution only
AWFW Anything which falls within
AWRT Anything which rounds to
ACF Any correct form
AG Answer given
SC Special case
oe Or equivalent
A2, $1 \quad 2$ or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE \quad Deduct x marks for each error
NMS No method shown
PI Possibly implied
SCA Substantially correct approach
$\mathbf{s f} \quad$ Significant figure(s)
dp Decimal place(s)

No method shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

1(a)	$\mathrm{KE}=\frac{1}{2} \times 58 \times 2^{2}$	M1	M1 Correct fully substituted expression for KE
	$=116 \mathrm{~J}$	A1	A1 CAO
1(b)	Change in PE: $m g h=58 \times 9.8 \times 7$	M1	M1 Expression for PE with 58 and 9.8 or 9.81 with 6 or 7 for the height (or 11 and 4,11 and 5 or 10 and 4)
	$=3978.8$	A1	A1 Accept 3980 or 3970 or 3978 or 3979 or 3978.8 Accept 3982 or 3983 or 3980
	$\begin{aligned} \mathrm{KE} & =3978.8+116 \mathrm{~J} \\ & =4094.8 \mathrm{~J} \end{aligned}$	M1	M1 Adding their two previous answers
	$\begin{aligned} & \text { Speed of Kim is } \sqrt{\frac{4094.8}{\frac{1}{2} \times 58}} \\ & =11.88 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	m1	dM 1 Seeing expression for $v\left(\right.$ not $\left.v^{2}\right)$, dependent on second M1
	$=11.9 \mathrm{~m} \mathrm{~s}^{-1}$	A1	A1 Accept 11.88 or 11.8 or 11.9 Accept 11.88 or 11.8 or 11.9 or AWRT 11.89 from $g=9.81$. Obtaining $v=\sqrt{u^{2}+2 g h}$ followed by incorrect substitution M0M1M1, unless h is 6 or 7 , which is M1M1M1 11.0 (from $h=6$) M1M1M1 $\begin{aligned} v & =\sqrt{2^{2}+2 \times g \times 7} & & \text { M1M1M1 } \\ & =\sqrt{141.2} & & \text { A1 } \\ & =11.9 & & \text { A1 } \\ v & =\sqrt{24+14 g} & & \text { M1M1M1A1 } \\ & =11.9 & & \text { A1 } \\ v & =\sqrt{2^{2}+12 g} & & \text { M1M1M1 } \end{aligned}$
	Total	7	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

2(a)(i)	Moments about $A B$ $\begin{aligned} & 1.6 \times 4+0.4 \times 8=2 \times x \\ & x=4.8 \end{aligned}$	M1A1	M1 for 2 terms correct
	Distance is 4.8 cm	A1	
2(a)(ii)	Moments about AD: $\begin{aligned} & 1.6 \times 6+0.4 \times 12=2 \times y \\ & y=7.2 \end{aligned}$	M1A1	M1 for 2 terms correct
	Distance is 7.2 cm	A1	SC2 + SC2 for (a)(i) and (a)(ii) reversed
2(b)	Moments about A : $1.6 \mathrm{~g} \times 6+0.4 \mathrm{~g} \times 12=12 \times \mathrm{T}_{B}$	M1A1	M1 for 1 side of equation Or using above: moments about A $12 \times \mathrm{T}_{\mathrm{B}}=7.2 \times 2 \mathrm{~g} \quad$ (ft for M marks)
	$\mathrm{T}_{\mathrm{B}}=1.2 \mathrm{~g}=11.8 \mathrm{~N}$	A1	
	Resolve vertically: $\mathrm{T}_{A}+\mathrm{T}_{B}=2 \mathrm{~g}$	M1	
	$\mathrm{T}_{A}=0.8 \mathrm{~g}=7.84 \mathrm{~N}$	A1	1.2 and 0.8 is zero marks If 11.8 and 7.8 as final answer, must lose 1 mark somewhere
	Total	11	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

3(a)	$\begin{aligned} & \mathbf{a}=\frac{\mathrm{d} v}{\mathrm{~d} t} \\ & \mathbf{a}=-8 \mathrm{e}^{-2 t_{\mathbf{i}}}+(6-6 t) \mathbf{j} \end{aligned}$	$\begin{gathered} \text { M1 A1 } \\ \text { A1 } \end{gathered}$	M1 Differentiating with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j}. A1 Correcticomponent. A1 Correct \mathbf{j} component.
3(b)(i)	Using $\mathbf{F}=\mathrm{ma}$ $\begin{aligned} & \mathbf{F}=5 \times\left\{-8 e^{-2 t} \mathbf{i}+(6-6 t) \mathbf{j}\right\} \\ & =-40 e^{-2 t} \mathbf{i}+(30-30 t) \mathbf{j} \end{aligned}$	M1 A1	M1 Multiplying their acceleration by 5 , even if not a vector. A1 Correct expression.
3(b)(ii)	Magnitude of \mathbf{F} is $\left\{(-40)^{2}+(30)^{2}\right\}^{\frac{1}{2}}$	M1	M1 Finding magnitude from two non-zero terms. Must add terms and square root. Condone $\left\{(40)^{2}+(30)^{2}\right\}^{\frac{1}{2}}$
	$=50$	A1	A1 Correct answer only In this part, condone lack of negative signs in expression for force in (b)(i)
3(c)	When \mathbf{F} acts due west, \mathbf{j} component is zero $30-30 t=0$	M1	M1 Putting \mathbf{j} component equal to zero
	$t=1$	A1	A1: Correct time.
3(d)	$\mathbf{r}=-2 \mathrm{e}^{-2 t} \mathbf{i}+\left(3 t^{2}-t^{3}\right) \mathbf{j}+\mathbf{c}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	M1 Integration with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j}. A1 Correct i component A1 Correct j component Condone lack of $+\mathbf{c}$
	When $t=0, \mathbf{r}=6 \mathbf{i}+5 \mathbf{j} \therefore \mathbf{c}=8 \mathbf{i}+5 \mathbf{j}$	m1	m1 Finding \mathbf{c} using $6 \mathbf{i}+5 \mathbf{j}$ and $\mathrm{e}^{0}=1$
	$\therefore \mathbf{r}=\left(8-2 \mathrm{e}^{-2 t}\right) \mathbf{i}+\left(5+3 t^{2}-t^{3}\right) \mathbf{j}$	A1	A1 Correct position vector.
	Total	14	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

4	Force acting against gravity is $m g \sin \theta$ Force acting against gravity and resistance is $m g \sin \theta+8000$	M1	Condone $\cos \theta$ or -1 for M marks
	$\begin{aligned} & =1500 \times g \times \sin \theta+8000 \\ & =8588 \mathrm{~N} \text { or } 8590 \mathrm{~N} \end{aligned}$	A1	
	$\begin{aligned} \text { Using power } & =\text { force } \times \text { velocity } \\ & =8588 \times 22 \end{aligned}$	m1	
	$=188936 \mathrm{~W}$	A1	
	$=189 \mathrm{~kW}$	A1	Accept 188.9 or 188
	Total	5	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

\begin{tabular}{|c|c|c|c|}
\hline 5(a) \& \& B1 \& \begin{tabular}{l}
B1 Diagram with exactly four forces showing arrow heads and labelled If components are also shown and they use a different style, eg dashed lines, they can be ignored \\
Note Award mark if forces drawn on the diagram in the question \\
Note Do not accept 8 kg for the weight Note Accept \(\mu R\) or \(0.3 R\) for \(F\)
\end{tabular} \\
\hline \multirow[t]{3}{*}{5(b)} \& \(R+T \sin 30^{\circ}=8 \times 9.8\) \& M1 \& M1 Resolving vertically to obtain a three term equation, with \(R, T\) sin or \(\cos \left(30^{\circ}\right.\) or \(\left.60^{\circ}\right)\) and 8 g oe \\
\hline \& (\(R=\)) \(78.4-T \sin 30^{\circ}\) \& A1 \& A1 Correct equation \\
\hline \& \((R=) 78.4-0.5 T\) \& A1 \& \begin{tabular}{l}
A1 Correct expression for \(R\) Accept (\(R=\)) \(8 \mathrm{~g}-T \sin 30^{\circ}\) \\
Note if using \(\mathrm{g}=9.81\) accept
\[
\begin{aligned}
\& R=78.48-0.5 T \text { or } \\
\& R=78.5-0.5 T
\end{aligned}
\]
\end{tabular} \\
\hline \multirow[t]{4}{*}{5(c)} \& \multicolumn{3}{|l|}{Alternative method 1} \\
\hline \& \(T \cos 30^{\circ}-F=8 \times 0.05\) \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 Horizontal equation of motion with \(F, T \sin\) or \(\cos \left(30^{\circ}\right.\) or \(\left.60^{\circ}\right)\) and \(8 \times 0.05\) oe \\
A1 Correct equation
\end{tabular} \\
\hline \& \[
F=0.3\left(78.4-T \sin 30^{\circ}\right)
\]
\[
T \cos 30^{\circ}-0.3\left(78.4-T \sin 30^{\circ}\right)=0.4
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 Using \(F=0.3 R\) with their \(R\) from part (b), provided it includes a term in \(T\) \\
A1 Correct expression for friction
\end{tabular} \\
\hline \& \[
T=\frac{23.52+0.4}{\cos 30^{\circ}+0.3 \sin 30^{\circ}}=23.5 \mathrm{~N}
\] \& m1

A1 \& | m1 Solving for T |
| :--- |
| Must see $\left(\cos 30^{\circ} \pm 0.3 \sin 30^{\circ}\right)$ or similar in the denominator. |
| (Dependent on both previous M marks) |
| A1 Correct T |
| Accept 23.6 or AWRT 23.5 |

\hline
\end{tabular}

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

5(c)	Alternative method 2		
	$T \cos 30^{\circ}-F=8 \times 0.05$	M1 A1	M1 Horizontal equation of motion with $F, T \sin$ or $\cos \left(30^{\circ}\right.$ or $\left.60^{\circ}\right)$ and 8×0.05 oe A1 Correct equation
	$\begin{aligned} & T \cos 30^{\circ}-0.3 R=8 \times 0.05 \\ & R+T \sin 30^{\circ}=8 \times 9.8 \end{aligned}$	M1 A1	M1 Using $F=0.3 R$ A1 Two correct equations involving only T and R
	Solving simultaneously gives $T=23.5$	m1 A1	m1 Solving for T A1 Correct T Accept 23.6 or AWRT 23.5 Note using g = 9.81 gives 23.6, also accept 23.5
	Total	10	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

6(a)	For particle B, tension in string $=2.1 \mathrm{~g} \mathrm{~N}$ Resolve horizontally for particle A	B1	
	$m \omega^{2} r=T$	M1	or $m_{1} \omega^{2} r=m_{2} g$ or $\frac{m_{1} v^{2}}{r}=m_{2} g$
	$\begin{aligned} & 1.4 \omega^{2} \times 0.3=2.1 \mathrm{~g} \\ & \omega^{2}=49 \end{aligned}$	A1	
	Angular velocity is $7 \mathrm{rad} / \mathrm{sec}$	A1	
6(b)	$\begin{aligned} & \text { Using } v=r \omega \\ & \text { speed }=0.3 \times 7 \end{aligned}$	M1	
	$=2.1 \mathrm{~m} \mathrm{~s}^{-1}$	A1	Part (b) marks can be awarded in (a)
6(c)	Time taken is $2 \pi / \omega$	M1	or $\frac{2 \pi}{2.1}$
	$=\frac{2 \pi}{7}=0.898 \mathrm{sec}$	A1	Accept $\frac{2 \pi}{7}$ (0.895 M1A0)
	Total	8	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

7(a)	Alternative method 1		
	$\begin{aligned} & 12 \sin 30^{\circ} t-4.9 t=-0.5 \\ & 4.9 t^{2}-12 \sin 30^{\circ} t-0.5=0 \end{aligned}$	M1A1A1	M1 Three term equation for vertical motion, with $\pm \mathrm{g}, \pm 0.5$ (or ± 1 and ± 1.5) and $12 \sin 30^{\circ} t$ or $12 \cos 30^{\circ} t$ A1 Correct terms. (one must be equivalent to ± 0.5) A1 Correct signs
	$\begin{aligned} & t=1.30281 \ldots \text { or }-0.078323 \ldots \\ & t=1.30 \text { seconds (to } 3 \mathrm{sf} \text {) AG } \end{aligned}$	m1A1	m 1 Solving the quadratic to find t Must see use of quadratic equation formula or can be implied by seeing 1.303 or 1.302 or similar A1 Correct time from correct working Must see more than 3 significant figures in their working before the final answer or two correct solutions to the quadratic (eg 1.3 and -0.08) Accept 1.3
	Alternative method 2		
	time up $=0.6122$	M1A1	M1 Adding time up to time down having used a quadratic. A1 0.6122
	time down $=0.6122+0.0783=0.6905$	m1A1	m1 Finding time down with a quadratic A1 0.6905
	$\begin{aligned} \text { total time }=0.6122+0.6905= & 1.30 \\ & \text { (to 3sf) } \end{aligned}$	A1	A1 Correct answer Accept 1.3
	Alternative method 3		
	$-6.767=12 \sin 30^{\circ}-g t$	M1A1A1	M1 Forms an equation to find t having found v first A1 Correct terms A1 Correct signs
	$\begin{equation*} t=\frac{12 \sin 30^{\circ} \times 6.767}{g}=1.30281=1.30 \tag{to3sf} \end{equation*}$	m1A1	m 1 : Solving for t A1 Correct time from correct working. Must see more than 3 significant figures in candidate's working before the final answer. Accept 1.3

\mathbf{Q}	Answer	Marks	Comments

7(b)	$12 \cos 30^{\circ} \times 1.303=13.5 \mathrm{~m}$	M1A1	M1 Finding horizontal displacement using 1.30 (or better) and $12 \cos 30^{\circ}$ Do not allow $12 \sin 30^{\circ}$ A1 Correct distance. AWRT 13.5.
7(c)	$v_{y}=12 \sin 30^{\circ}-9.8 \times 1.3028(=6.767)$	M1A1	M1 Finding vertical component of velocity or velocity squared at impact. Must include $12 \cos 30^{\circ}$ or $12 \cos 30$ and $\pm g$ A1 Correct expression for vertical component. May have 1.3 or 1.30 instead of 1.3028 (Accept +6.767 or similar)
	$\begin{aligned} & v=\sqrt{\left(12 \cos 30^{\circ}\right)^{2}+(-6.767)^{2}} \\ & =12.4 \mathrm{~ms}^{-1} \end{aligned}$	m1A1	m1 Finding speed from two components. May use 6.74. A1 Correct speed. Allow 12.3 or AWRT 12.4. Note using $\mathrm{g}=9.81$ still gives 12.4
7(d)	$\begin{aligned} & \tan \theta=\frac{6.767}{12 \cos 30^{\circ}} \\ & \quad \theta=33.1^{\circ} \\ & \text { or } \\ & \sin \theta=\frac{6.767}{12.4} \\ & \quad \theta=33.1^{\circ} \\ & \text { or } \\ & \cos \theta=\frac{10.4}{12.4} \\ & \theta=33.1^{\circ} \end{aligned}$	M1	M1 Trigonometric equation to find angle Can only be those shown opposite or described below For tan, fraction can be inverted For sin, 10.4 can be used instead of 6.767 For cos, 6.767 can be used instead of 10.4 Can use their values from part (c) (eg 6.74 or 6.77)
		A1ft	A1ft Correct angle Accept AWRT 33° Follow though vertical component or final speed from part (c)
	Total	8	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

8(a)		B2	B1 for S and $6 g$ (in correct place) B1 for R and F or combined vertical force at C
8(b)	Moments about C :		
	$3 \times S \times \cos 20^{\circ}=6 \mathrm{~g} \times 1 \times \cos 20^{\circ}$	M1A1	M1 2 terms, 1 term correct
	S $=19.6 \mathrm{~N}$ or $2 g$	A1	R, F not correct 0 marks in (c)(i) and (c)(ii)
8(c)(i)	Moments about A $2 \times 6 g \times \cos 20^{\circ}=R \times 3$	M1A1	Or Moments about mid-point of rod:
	$R=36.8 \mathrm{~N}$ (or resolving, $\begin{aligned} R & =6 g \cos 20^{\circ}-S \cos 20^{\circ} \\ & \left.=4 g \cos 20^{\circ}\right) \end{aligned}$	A1	$\begin{aligned} & 2 \times S \times \cos 20^{\circ}=P \times 1 \times \cos 20^{\circ} \\ & P=39.2 \mathrm{~N} \text { or } 4 g \end{aligned}$ (or resolving vertically $P=4 g$)
8(c)(ii)	Resolve parallel to $A B$: $\begin{align*} & S \cos 70^{\circ}+F=6 g \cos 70^{\circ} \tag{A1}\\ & F=4 g \cos 70^{\circ} \end{align*}$	M1	$\begin{aligned} R & =P \times \cos 20^{\circ} \\ & =36.8 \mathrm{~N} \\ F & =P \times \sin 20^{\circ} \end{aligned}$ M1 A1
	$=13.4 \mathrm{~N}$ (or $F=6 \mathrm{~g} \sin 20^{\circ}-S \sin 20^{\circ}=4 \mathrm{~g} \sin 20^{\circ}$)	A1	$=13.4 \mathrm{~N} \quad \mathrm{~A} 1$
8(d)	Using $F=\mu R$: $13.4=\mu \times 36.8$	M1	M1 their (c)(ii) $=\mu$ their (c)(i)
	$\mu=0.364$ or $\tan 20^{\circ}$	A1ft	(condone \geq)
	Total	12	

GET HELP AND SUPPORT

Visit our website for information, guidance, support and resources at oxfordaqaexams.org.uk You can contact the English subject team directly at:

E: english@oxfordaqaexams.org.uk

OXFORD INTERNATIONAL AQA EXAMINATIONS
LINACRE HOUSE, JORDAN HILL, OXFORD, OX2 8TA
UNITED KINGDOM
enquiries@oxfordaqaexams.org.uk oxfordaqaexams.org.uk

