OXFORD	
INTERNATIONAL AQA EXAMINATIONS	
Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA05) Unit M2 - Mechanics

Specimen 2018

Time allowed: 1 hour 30 minutes

Materials

• For this paper you must have the booklet of formulae and statistical tables.

Morning

• You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- Unless otherwise stated, use $g = 9.8 \text{ ms}^{-2}$

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

	Answer all questions in the spaces provided.
1	In an Olympic diving competition, Kim, who has mass 58 kg, dives from a fixed platform 10 metres above the surface of the pool. She leaves the platform with a speed of 2 ms $^{-1}$.
	Assume that Kim's weight is the only force that acts on her after she leaves the platform. Kim is to be modelled as a particle which is initially 1 m above the platform.
(a)	Calculate Kim's initial kinetic energy. [2 marks]
	Answer J

(b) By using conservation of energy, find Kim's speed when she is 6 m below the platform. [5 marks] Answer _____ m s⁻¹

(ii)	Find the distance of the centre of mass of the logo from the line <i>AD</i> .	[3 marks]
	Answer	cm

Find the tensions in each of these two strings.	[5
	[5

3	A particle moves in a horizontal plane under the action of a single force, F need to be the unit vectors i and j are directed east and north respectively. At time <i>t</i> seconds, the velocity of the particle, v ms ^{-1} , is given by	wtons.
	$v = 4e^{-2t} i + (6t - 3t^2)j$	
(a)	Find an expression for the acceleration of the particle at time <i>t</i> .	[3 marks]
	Answer	
(b)	The mass of the particle is 5 kg.	
(i)	Find an expression for the force, F , acting on the particle at time t .	[2 marks]
	Answer	

(ii)	Find the magnitude of F when $t = 0$	[2 marks]
	Answer	
(c)	Find the value of <i>t</i> when F acts due west.	[2 marks]
	Answer	

Answer	Find the position vector, r me	etres, of the particle at time t.	[5
			[3
Answer			
	Ans	swer	

A van, of mass 1500 kg, travels at a constant speed of 22 ms ⁻¹ up a slope inclined at an angle θ to the horizontal, where sin $\theta = \frac{1}{25}$
The van experiences a resistance force of 8000 N.
Find the power output of the van's engine, giving your answer in kilowatts. [5 marks
Answer

5	A man pulls a small block, of mass 8 kg, along a rough horizontal surface, using a rope.
	The coefficient of friction between the block and the ground is 0.3. The tension in the rope is T newtons. The rope is kept at an angle of 30° to the horizontal, as shown in the diagram.
	*
	T
	30°
(a)	Draw a diagram to show all of the forces acting on the block. [1 mark]

(b)	Find the magnitude of the normal reaction force in terms of <i>T</i> .	[3 marks]
	Answer	
(c)	Given that the block accelerates at 0.05 ms ^{-2} , find the value of <i>T</i> .	[6 marks]
	Answer	

6	Two particles, A and B, are connected by a light inextensible string which passes through a hole in a smooth horizontal table. The edges of the hole are also smooth. Particle A, of mass 1.4 kg, moves, on the table, with constant speed in a circle of radius 0.3 m around the hole. Particle B, of mass 2.1 kg, hangs in equilibrium under the table, as shown in the diagram.
(a)	Find the angular speed of particle A. [4 marks]
	Answer

to complete one full circle around the hole.
to complete one full circle around the hole.
to complete one full circle around the hole.
to complete one full circle around the hole.
•
-

An arrow is fired from a point at a height of 1.5 metres above horizontal ground. 7 It has an initial velocity of 12 ms^{-1} at an angle of 30° above the horizontal. The arrow hits a target at a height of 1 metre above horizontal ground. The path of the arrow is shown in the diagram. 12 ms^{-1} 1.5 metres 1 metre Model the arrow as a particle. Show that the time it takes for the arrow to travel to the target is 1.30 seconds, (a) correct to three significant figures. [5 marks]

the target.		[2 m
	Answer	m
Find the s	speed of the arrow when it hits the target.	[4 m

d) Find the arrow hit	e angle between the velocity of the arrow and the horizon its the target.	[2 mai
	Answer	

8	A uniform rod <i>AB</i> , of length 4 m and mass 6 kg, rests in equilibrium with one end <i>A</i> on smooth horizontal ground. The rod rests on a rough horizontal peg at the point <i>C</i> , where <i>AC</i> is 3 m. The rod is inclined at an angle of 20° to the horizontal.	
	В	
	c	
	A 20°	
(2)	Draw a diagram to show the forces acting on the rod.	
(a)	[2 marks]	
(h)	Find the magnitude of the normal reaction force between the red and the ground	
(b)	Find the magnitude of the normal reaction force between the rod and the ground. [3 marks]	
	Answer	

(c) (i)	Find the normal reaction force acting on the rod at <i>C</i> .	[3 marks]
	A.powor	
	Answer	
(c) (ii)	Find the friction force acting on the rod at <i>C</i> .	[2 marks]
	Answer	

(d)	In this position, the rod is on the point of slipping.	
	Calculate the coefficient of friction between the rod and the peg.	markal
	[2]	narks]
	Answer	
	END OF QUESTIONS	
may have be	to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-hol een unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of gements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford,	

Copyright © 2017 Oxford International AQA Examinations and its licensors. All rights reserved.