OXFORD INTERNATIONAL AQA EXAMINATIONS

Please write clearly in block capitals.					
Centre number	Candidate number				
Surname					
Forename(s)					
Candidate signature					

INTERNATIONAL AS MATHEMATICS

(9660/MA01) Unit P1 - Pure Mathematics

Specimen 2018

Morning

Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions in the spaces provided.					
1 (a) (i)	Given that $\frac{1}{8} = 2^q$, st Circle your answer.	ate the value of q .			
	-3	$-\frac{1}{3}$	$\frac{1}{3}$	3	[1 mark]
(a) (ii)	Given that $\sqrt{2} = 2^r$, s Circle your answer.	state the value of <i>r</i> .			[1 mark]
	$-\frac{1}{2}$	0	$\frac{1}{2}$	2	
(b)	Find the value of <i>x</i> for	which $\sqrt{2} \times 2^x = \frac{1}{8}$			[2 marks]
		Answer			

2	The line <i>AB</i> has equation $7x + 3y = 13$	
(a)	Find the gradient of AB.	[2 marks]
	Answer	
(b)	The point C has coordinates $(1, 3)$	
(0)	The point C has coordinates (-1, 3)	
(b) (i)	Find an equation of the line which passes through the point <i>C</i> and which is parallel to <i>AB</i> .	
		[2 marks]
	Answer	
(b) (ii)	The point $(1\frac{1}{2}, -1)$ is the midpoint of AC	
(8) (11)		
	Find the coordinates of the point A.	[2 marks]
	Answer	

(b) (i) Hence find $\int \frac{(2+x^2)^3}{x^4} dx$ [5 marks] Answer _____ (b) (ii) Hence find the exact value of $\int_{1}^{2} \frac{(2+x^{2})^{3}}{x^{4}} dx$ [2 marks] Answer

4	A geometric series has third term 36 and sixth term 972	
(a) (i)	Show that the common ratio of the series is 3.	[2 marks]
	Answer	
(a) (ii)	Find the first term of the series.	[2 marks]
	Answer	
(b)	The <i>n</i> th term of the series is u_n	
	Show that $\sum_{n=1}^{20} u_n = 2(3^{20} - 1)$	[2 marka]

5	Use the trapezium rule with four ordinates (three strips) to find an approximate value for		
	$\sqrt{27x^3+4} dx$. Give your answer to three significant figures.		
	J 0	[4 marks]	
	Answer	_	
6	The polynomial $p(x)$ is given by $p(x) = x^3 - 2x^2 + 3$		
(a)	Use the Remainder Theorem to find the remainder when $p(x)$ is divided by x –	3 [2 marks]	
	Answer	_	
(b)	Use the Factor Theorem to show that $x + 1$ is a factor of $p(x)$.	[2 marks]	

7

Express $p(x) = x^3 - 2x^2 + 3$ in the form $(x + 1)(x^2 + bx + c)$, where <i>b</i> and <i>c</i> are integers.	[2 marks]
Answer	
Hence show that the equation $p(x) = 0$ has exactly one real root.	[2 marks]
An arithmetic series has first term a and common difference d	
The sum of the first 25 terms of the series is 3500 .	
Show that $a + 12d = 140$	[3 marks]
	Express $p(x) = x^3 - 2x^2 + 3$ in the form $(x + 1)(x^2 + bx + c)$, where <i>b</i> and <i>c</i> are integers. Answer

(b)	The fifth term of the series is 100.	
	Find the value of d and the value of a .	[4 membre]
		[4 marks]
	<i>d</i> =	
	<i>u</i> –	
(c)	The <i>n</i> th term of the series u_n	
	Given that $33\left(\sum_{i=1}^{25}u_n-\sum_{i=1}^{k}u_n\right)=67\sum_{i=1}^{k}u_n$	
	$(n = 1 \qquad n = 1) \qquad n = 1$	
	find the value of $\sum_{n=1}^{n} u_n$	
	n = 1	[3 marks]
	A = =	
	Answer	

Hence find the area of the shaded region bounded by the curve $y = x^3 - 2x^2 + 3$ (b) and the line AB. [3 marks] Answer Turn over for the next question

(b)	Find the equation of the curve.	[4 marks]
	Answer	_
10 (a) (i)	Express $4 - 10x - x^2$ in the form $p - (x + q)^2$	[2 marks]
	Answer	_
(a) (ii)	Hence write down the equation of the line of symmetry of the curve with equation $y = 4 - 10x - x^2$	on [1 mark]
	Answer	_

(b)	The curve C has equation $y = 4 - 10x - x^2$ and the line L has equation $y = k(4x - 13)$		
(b) (i)	Show that <i>x</i> -coordinates of any points of intersection of the curve <i>C</i> with the line <i>L</i> satisfy the equation		
	$x^2 + 2(2k + 5)x - (13k + 4) = 0$	[1 mark]	
(b) (ii)	Given that curve <i>C</i> and the line <i>L</i> intersect in two distinct points, show that $4k^2 + 33k + 29 > 0$	[3 marks]	
(b) (iii	Solve the inequality $4k^2 + 33k + 29 > 0$	[4 marks]	
	Answer		
	END OF QUESTIONS		

