OXFORD

INTERNATIONAL AQA EXAMINATIONS

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature

INTERNATIONAL AS MATHEMATICS

(9660/MA01) Unit P1 - Pure Mathematics

Specimen 2018
Morning
Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions in the spaces provided.

1 (a) (i) Given that $\frac{1}{8}=2^{q}$, state the value of q.
Circle your answer.

> -3
$-\frac{1}{3}$
$\frac{1}{3}$
3
(a) (ii) Given that $\sqrt{2}=2^{r}$, state the value of r.

Circle your answer.
$-\frac{1}{2}$
0
$\frac{1}{2}$
(b) Find the value of x for which $\sqrt{2} \times 2^{x}=\frac{1}{8}$

2 The line $A B$ has equation $7 x+3 y=13$
(a) Find the gradient of $A B$.

Answer
(b) The point C has coordinates $(-1,3)$
(b) (i) Find an equation of the line which passes through the point C and which is parallel to $A B$.

Answer
(b) (ii) The point $\left(1 \frac{1}{2},-1\right)$ is the midpoint of $A C$.

Find the coordinates of the point A.
\qquad
\qquad
\qquad

Answer
(c) The line $A B$ intersects the line with equation $3 x+2 y=12$ at the point B. Find the coordinates of B.

Answer

3 (a) The expression $\left(2+x^{2}\right)^{3}$ can be written in the form

$$
8+p x^{2}+q x^{4}+x^{6}
$$

Show that $p=12$ and find the value of the integer q.

$$
q=
$$

(b) (i) Hence find $\int \frac{\left(2+x^{2}\right)^{3}}{x^{4}} \mathrm{~d} x$
\qquad
\qquad
\qquad 1
\qquad

Answer
(b) (ii) Hence find the exact value of $\int_{1}^{2} \frac{\left(2+x^{2}\right)^{3}}{x^{4}} \mathrm{~d} x$

Answer

4 A geometric series has third term 36 and sixth term 972
(a) (i) Show that the common ratio of the series is 3 .
\qquad
\qquad
\qquad

Answer
(a) (ii) Find the first term of the series.
\qquad
\qquad
\qquad

Answer
(b) The nth term of the series is u_{n}

Show that $\sum_{n=1}^{20} u_{n}=2\left(3^{20}-1\right)$

5 Use the trapezium rule with four ordinates (three strips) to find an approximate value for $\int_{0}^{1.5} \sqrt{27 x^{3}+4} \mathrm{~d} x$. Give your answer to three significant figures.

Answer

6 The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}-2 x^{2}+3$
(a) Use the Remainder Theorem to find the remainder when $\mathrm{p}(x)$ is divided by $x-3$ [2 marks]

Answer
(b) Use the Factor Theorem to show that $x+1$ is a factor of $\mathrm{p}(x)$.
\qquad
\qquad (1)
(c) (i) Express $\mathrm{p}(x)=x^{3}-2 x^{2}+3$ in the form $(x+1)\left(x^{2}+b x+c\right)$, where b and c are integers.
\qquad
\qquad
\qquad

Answer
(c) (ii) Hence show that the equation $\mathrm{p}(x)=0$ has exactly one real root.
$7 \quad$ An arithmetic series has first term a and common difference d.
The sum of the first 25 terms of the series is 3500 .
(a) Show that $a+12 d=140$
(b) The fifth term of the series is 100 .

Find the value of d and the value of a.

$$
\begin{aligned}
& d= \\
& a=
\end{aligned}
$$

(c) The nth term of the series u_{n}

Given that $33\left(\sum_{n=1}^{25} u_{n}-\sum_{n=1}^{k} u_{n}\right)=67 \sum_{n=1}^{k} u_{n}$ find the value of $\sum_{n=1}^{k} u_{n}$

8 The curve with equation $y=x^{3}-2 x^{2}+3$ is sketched below.

(a) Show that $\int_{-1}^{1}\left(x^{3}-2 x^{2}+3\right) \mathrm{d} x=4 \frac{2}{3}$
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
(b) Hence find the area of the shaded region bounded by the curve $y=x^{3}-2 x^{2}+3$ and the line $A B$.

Answer

Turn over for the next question

9 At the point (x, y), where $x>0$, the gradient of a curve is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-\frac{4}{x^{2}}-11
$$

The point $P(2,1)$ lies on the curve.
(a) (i) Verify that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=2$
(a) (ii) Find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=2$
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
(a) (iii) Hence state whether P is a maximum point or a minimum point, giving a reason for your answer.
P is a

Reason
(b) Find the equation of the curve.

Answer

10 (a) (i) Express $4-10 x-x^{2}$ in the form $p-(x+q)^{2}$

Answer

(a) (ii) Hence write down the equation of the line of symmetry of the curve with equation $y=4-10 \mathrm{x}-x^{2}$
\qquad
\qquad
\qquad

Answer
(b) The curve C has equation $y=4-10 x-x^{2}$ and the line L has equation $y=k(4 x-13)$
(b) (i) Show that x-coordinates of any points of intersection of the curve C with the line L satisfy the equation

$$
x^{2}+2(2 k+5) x-(13 k+4)=0
$$

\qquad
\qquad
\qquad
(b) (ii) Given that curve C and the line L intersect in two distinct points, show that

$$
4 k^{2}+33 k+29>0
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (iii) Solve the inequality $4 k^{2}+33 k+29>0$

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

