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Materials 
• For this paper you must have the booklet of formulae and statistical tables. 
• You may use a graphics calculator.  

Instructions 
• Use black ink or black ball-point pen. Pencil should only be used for drawing. 
• Fill in the boxes at the top of this page. 
• Answer all questions. 
• You must answer each question in the space provided for that question.   

If you require extra space, use a supplementary answer book; do not use 
the space provided for a different question. 

• Do not write outside the box or around each page. 
• Show all necessary working; otherwise marks for method may be lost. 
• Do all rough work in this book.  Cross through any work that you do not want  

to be marked. 

Information 
• The marks for questions are shown in brackets. 
• The maximum mark for this paper is 80 

Advice 
• Unless stated otherwise, you may quote formulae, without proof, from the 

booklet. 
• You do not necessarily need to use all the space provided. 



2 

 Version 0.4 XXXX 
   

 

 

Answer all questions in the spaces provided. 

1 (a) (i) Given that  
8
1  = 2q , state the value of q. 

    Circle your answer. 
[1 mark] 

−3 −
3
1  

3
1  3 

 (a) (ii) Given that  2  = 2r , state the value of r. 

    Circle your answer. 
[1 mark] 

−
2
1  0 

2
1  2 

 (b)  Find the value of x for which 2  × 2x = 
8
1  

[2 marks] 

 

 

 

Answer   
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2   The line AB has equation  7x + 3y = 13 

 (a)  Find the gradient of AB. 
[2 marks] 

 

 

 

Answer   

 (b)  The point C has coordinates (−1, 3) 

 (b) (i) Find an equation of the line which passes through the point C and which is 
    parallel to AB. 

[2 marks] 

 

 

 

Answer   

 (b) (ii) The point (1
2
1 , −1) is the midpoint of AC. 

    Find the coordinates of the point A. 
[2 marks] 

 

 

 

Answer   
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 (c)  The line AB intersects the line with equation 3x + 2y = 12 at the point B. 

   Find the coordinates of B. 
[3 marks] 

 

 

 

 

 

Answer   

3 (a)  The expression (2 + x2)
3
 can be written in the form 

    8 + px2 + qx4 + x6 

    Show that  p = 12  and find the value of the integer q. 
[3 marks] 

 

 

 

 

 

q =   
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 (b) (i) Hence find  ∫ + x
x

x d4

2 3)2(  

[5 marks] 

 

 

 

 

 

Answer   

 (b) (ii) Hence find the exact value of  ∫ +
2

1
4

2 3)2( x
x

x d  

[2 marks] 

 

 

 

Answer   
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4    A geometric series has third term 36 and sixth term 972 

  (a) (i) Show that the common ratio of the series is 3. 
[2 marks] 

 

 

 

Answer   

  (a) (ii) Find the first term of the series. 
[2 marks] 

 

 

 

Answer   

  (b)  The nth term of the series is u
n
 

    Show that  ( )n
n

u
=

= −∑ 20
20

1
2 3 1   

[2 marks] 
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5    Use the trapezium rule with four ordinates (three strips) to find an approximate value for  

    ∫ +
5.1

0

3 427 xx d  .   Give your answer to three significant figures. 

[4 marks] 

 

 

 

 

 

 

 

Answer   

 

6    The polynomial p(x) is given by p(x) = x3 − 2x2 + 3 

 (a)  Use the Remainder Theorem to find the remainder when p(x) is divided by x − 3 
[2 marks] 

 

 

 

Answer   

 (b)  Use the Factor Theorem to show that x + 1 is a factor of p(x). 
[2 marks] 
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 (c) (i) Express  p(x) = x3 − 2x2 + 3  in the form  (x + 1)(x2 + bx + c), where b and c 
   are integers. 

[2 marks] 

 

 

 

Answer   

 (c) (ii) Hence show that the equation p(x) = 0 has exactly one real root. 
[2 marks] 

 

 

 

7   An arithmetic series has first term a and common difference d. 

   The sum of the first 25 terms of the series is 3500. 

 (a)  Show that  a + 12d = 140 
[3 marks] 
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 (b)  The fifth term of the series is 100. 

   Find the value of d and the value of a. 
[4 marks] 

 

 

 

 

 

 

d =   

a =   

 (c)  The nth term of the series un 

   Given that  ∑∑ ∑
== =

=















−

k

n

n

n

k

n

nn uuu
1

25

1 1

6733  

   find the value of  ∑
=

k

n

nu
1

 

[3 marks] 

 

 

 

 

 

Answer   
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8   The curve with equation  y = x3 − 2x2 + 3  is sketched below. 

 (a)  Show that  ∫− +−
1

1

23 )32( xxx d = 4
3
2  

[5 marks] 

 

 

 

 

 

 

 

Answer   
 

O 
x 

y 

−1 
A 

B(1, 2) 
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 (b)  Hence find the area of the shaded region bounded by the curve  y = x3 − 2x2 + 3 
   and the line AB. 

[3 marks] 

 

 

 

 

 

 

 

Answer   

 

 
 

Turn over for the next question 
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9   At the point (x, y), where x > 0, the gradient of a curve is given by 

    
x
y

d
d

 = 3x2 − 2
4
x

 − 11 

   The point P(2, 1) lies on the curve. 

 (a) (i) Verify that  
x
y

d
d

 = 0  when  x = 2 

[1 mark] 

 

 

 (a) (ii) Find the value of  
d
d

y
x

2

2   when x = 2  

[4 marks] 

 

 

 

 

 

Answer   

 (a) (iii) Hence state whether P is a maximum point or a minimum point, giving a reason 
   for your answer. 

[1 mark] 

P is a    

Reason   
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 (b)  Find the equation of the curve. 
[4 marks] 

 

 

 

 

 

Answer   

10 (a) (i) Express  4 − 10x − x2  in the form  p − (x + q)2  
[2 marks] 

 

 

 

Answer   

 (a) (ii) Hence write down the equation of the line of symmetry of the curve with equation 
   y = 4 − 10x − x2 

[1 mark] 

 

 

 

Answer   
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 (b)  The curve C has equation  y = 4 − 10x − x2 and the line L has equation  y = k(4x − 13)   

 (b) (i) Show that x-coordinates of any points of intersection of the curve C with the line L 
   satisfy the equation 

    x2 + 2(2k + 5)x − (13k + 4) = 0 
[1 mark] 

 

 

 

 (b) (ii) Given that curve C and the line L intersect in two distinct points, show that  

    4k2 + 33k + 29 > 0 
[3 marks] 

 

 

 

 

 

 (b) (iii) Solve the inequality  4k2 + 33k + 29 > 0 
[4 marks] 

 

 

 

 

 

 

Answer   

END  OF  QUESTIONS 
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There are no questions printed on this page 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DO  NOT  WRITE  ON  THIS  PAGE 
ANSWER  IN  THE  SPACES  PROVIDED 
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