OXFORD

INTERNATIONAL AQA EXAMINATIONS

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)

Candidate signature \qquad

INTERNATIONAL AS
 MATHEMATICS

(9660/MA02) Unit PSM1 - Pure, Statistics and Mechanics

Specimen 2018

Materials

- For this paper you must have the booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- Unless otherwise stated, use $g=9.8 \mathrm{~ms}^{-2}$

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions in the spaces provided.

1 The diagram shows a sector $O A B$ of a circle with centre O and radius 5 cm .

The angle between the radii $O A$ and $O B$ is θ radians.
The length of the arc $A B$ is 4 cm .
1 (a) Find the value of θ.
\qquad
\qquad
\qquad
\qquad

Answer

1 (b) Find the area of the sector $O A B$.
\qquad
\qquad
\qquad
\qquad
cm^{2}

2 A circle has centre $C(3,-8)$ and radius 10 .
2 (a) Express the equation of the circle in the form

$$
(x-a)^{2}+(y-b)^{2}=k
$$

2 (b) Find the x-coordinates of the points where the circle crosses the x-axis.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

2 (c) The tangent to the circle at the point A has gradient $\frac{5}{2}$
Find an equation of the line $C A$, giving your answer in the form $r x+s y+t=0$, where r, s and t are integers.

3 The triangle $A B C$, shown in the diagram, is such that $A B$ is 10 metres and angle $B A C$ is 150°.

The area of triangle $A B C$ is $40 \mathrm{~m}^{2}$
3 (a) Show that the length of $A C$ is 16 metres.
\qquad
\qquad
\qquad L

3 (b) Calculate the length of $B C$, giving your answer in metres, to two decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad

3 (c) Calculate the smallest angle of triangle $A B C$, giving your answer to the nearest 0.1°.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
degrees

4 (a) Solve the equation $\tan x=-3$ in the interval $0^{\circ} \leq x \leq 360^{\circ}$, giving your answers to the nearest degree.

Answer

4 (b) (i) Given that

$$
7 \sin ^{2} \theta+\sin \theta \cos \theta=6
$$

show that

$$
\tan ^{2} \theta+\tan \theta-6=0
$$

4 (b) (ii) Hence solve the equation $7 \sin ^{2} \theta+\sin \theta \cos \theta=6$ in the interval $0^{\circ} \leq x \leq 360^{\circ}$, giving your answers to the nearest degree.
[4 marks]

Answer

5 (a) Sketch the graph of $y=\frac{1}{2^{x}}$, indicating the value of the intercept on the y-axis

5 (b) Use logarithms to solve the equation $\frac{1}{2^{x}}=\frac{5}{4}$, giving your answer to three significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad

5 (c) Given that

$$
\log _{a} b^{2}+3 \log _{a} y=3+2 \log _{a}\left(\frac{y}{a}\right)
$$

express y in terms of a and b.
Give your answer in a form not involving logarithms.

Answer

6 An analysis of the number of vehicles owned by each household within a city is shown in the table.

Number of vehicles	0	1	2	≥ 3
Percentage of households	18	47	25	10

A random sample of 30 households within the city is selected.
Use a binomial distribution with $n=30$, together with relevant information from the table in each case, to find the probability that the sample contains:

6 (a) exactly 3 households with no vehicles;

Answer

6 (b) more than 10 households with at least two vehicles.
\qquad
\qquad
\qquad
\qquad $\underline{\text { len }}$ (2) $\underline{\text { — }}$
\qquad

7 A blue biased tetrahedral die is rolled.
The number, Y, on the face on which it lands has the probability distribution given by

$$
\mathrm{P}(Y=y)= \begin{cases}\frac{y}{20} & y=1,2 \text { and } 3 \\ \frac{7}{10} & y=4\end{cases}
$$

The random variable T is the value obtained when the number on the face on which it lands is multiplied by 3

Calculate $E(T)$ and $\operatorname{Var}(T)$.
\qquad

$$
E(T)=
$$

\qquad

$$
\operatorname{Var}(T)=
$$

\qquad

8 Dina is a member of a tenpin bowling club which meets at a bowling alley on Wednesday and Thursday evenings.

The probability that she bowls on a Wednesday evening is 0.90 . Independently, the probability that she bowls on a Thursday evening is 0.95 .

8 (a) Calculate the probability that, during a particular week, Dina bowls on:

8 (a) (i) two evenings;
\qquad
\qquad
\qquad

Answer

8 (a) (ii) exactly one evening.
\qquad
\qquad
\qquad

Answer

8 (b) Imran, a friend of Dina, is a member of the same club.
The probability that he bowls on a Wednesday evening, given that Dina bowls on that evening, is 0.80 . The probability that he bowls on a Wednesday evening, given that Dina does not bowl on that evening, is 0.15 .

The probability that he bowls on a Thursday evening, given that Dina bowls on that evening, is 1 . The probability that he bowls on a Thursday evening, given that Dina does not bowl on that evening, is 0 .

Calculate the probability that, during a particular week:

8 (b) (i) Dina and Imran bowl on a Wednesday evening;
\qquad
\qquad
\qquad

Answer

8 (b) (ii) Dina and Imran bowl on both evenings;

Answer

8 (b) (iii) Dina, but not Imran, bowls on a Thursday evening;

Turn over for the next question

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

9 A ball is thrown vertically downwards, at an initial speed of $2 \mathrm{~m} \mathrm{~s}^{-1}$, from a point 5 m above a fixed smooth horizontal surface. The ball then moves freely under gravity.

9 (a) Find the speed of the ball as it reaches the surface giving your answer in $\mathrm{m} \mathrm{s}^{-1}$ to three significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer $\mathrm{m} \mathrm{s}^{-1}$

9 (b) The ball rebounds vertically upwards from the surface with an initial speed of $4 \mathrm{~m} \mathrm{~s}^{-1}$ Find the time taken by the ball to reach its maximum height after rebounding giving your answer in seconds to three significant figures.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9 (c) Given that the ball has mass 0.1 kg , find the impulse that the ball receives during its impact with the surface giving your answer in Ns to three significant figures.

10 Two particles, P and Q, are connected by a string that passes over a fixed, smooth peg, as shown in the diagram. The mass of P is 5 kg and the mass of Q is 3 kg .
The particles are released from rest in the position shown, where P and Q are at the same level.

10 (a) By forming an equation of motion for each particle, show that the magnitude of the acceleration of the particles is $2.45 \mathrm{~ms}^{-2}$.
\qquad (—)
\qquad

10 (b) Find the tension in the string.

11 A particle moves in a straight line.
At time t seconds, where $t \geq 0$, it has velocity $\left(3 t^{2}-2 t-5\right) \mathrm{m} \mathrm{s}^{-1}$.
Find the acceleration of the particle when it comes instantaneously to rest.
[5 marks]
\qquad
\qquad \longrightarrow \longrightarrow
\qquad

Answer
$\mathrm{m} \mathrm{s}^{-2}$

END OF QUESTIONS

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 Oxford International AQA Examinations and its licensors. All rights reserved.

