INTERNATIONAL
AQA EXAMINATIONS

Mark scheme

Further pure mathematics Unit 1

Specimen

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Key to mark scheme abbreviations

M Mark is for method
m
Mark is dependent on one or more M marks and is for method
A Mark is dependent on M or m marks and is for accuracy
B \quad Mark is independent of M or m marks and is for method and accuracy
E Mark is for explanation
ft Follow through from previous incorrect result
CAO Correct and answer only
AWFW Anything which falls within
AWRT Anything which rounds to
ACF Any correct form
AG Answer given
SC Special case
oe Or equivalent
A2, $1 \quad 2$ or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE \quad Deduct x marks for each error
NMS No method shown
PI Possibly implied
SCA Substantially correct approach
sf Significant figure(s)
dp Decimal place(s)

No method shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Answer	Marks	Total	Comments
1(a)	$\begin{aligned} \mathrm{f}(r+1)-\mathrm{f}(r) & =r(r+1)^{2}-(r-1) r^{2} \\ & =r\left(r^{2}+2 r+1-r^{2}+r\right) \\ & =r(3 r+1) \end{aligned}$	M1 A1 A1	3	any expanded form AG
(b)	$\left.\begin{array}{lc} r=50 & \mathrm{f}(51)-\mathrm{f}(50) \\ r=51 & \mathrm{f}(52)-\mathrm{f}(51) \\ r=99 & \mathrm{f}(100)-\mathrm{f}(99) \end{array}\right\} \mathrm{PI}$	M1A1 m1 A1	4	OE clearly shown. Accept $\sum_{1}^{99}-\sum_{1}^{49}$ clear cancellation cao
Total 7				

2(a)	$\alpha+\beta=-\frac{7}{2}$ $\alpha \beta=4$	B 1		
(b)	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\left(-\frac{7}{2}\right)^{2}-2(4)$	M1		Using correct identity with ft or correct substitution
	$=\frac{49}{4}-8=\frac{17}{4}$	A1	2	CSO AG. A0 if $\alpha+\beta$ has wrong sign

(c)	$\begin{aligned} & (\text { Sum }=) \\ & \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}=\frac{17 / 4}{16}\left(=\frac{17}{64}\right) \\ & =\frac{17}{64} \\ & (\text { Product }=) \frac{1}{(\alpha \beta)^{2}}=\frac{1}{16}\left(=\frac{4}{64}\right) \\ & x^{2}-S x+P(=0) \end{aligned}$ Eqn is $64 x^{2}-17 x+4=0$	M1 A1ft B1ft M1 A1	5	Writing $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$ in a correct suitable form with ft or correct substitution ft wrong value for $\alpha \beta$ ft wrong value for $\alpha \beta$ Using correct general form of LHS of eqn with ft substitution of their S and P values. PI CSO Integer coefficients and ' $=0$ ' needed
Total 9				

Q Answer Marks Total Comments 3(a) $\int 2 x^{-3} \mathrm{~d} x=-x^{-2}(+c)$ $\int_{p}^{q} 2 x^{-3} \mathrm{~d} x=p^{-2}-q^{-2}$ M1A1 M1 for correct index (b)(i) As $p \rightarrow 0, p^{-2} \rightarrow \infty$, so no value B1 OE; ft wrong coefficient of x^{-2} (ii) As $q \rightarrow \infty, q^{-2} \rightarrow 0$, so value is $1 / 4$ M1A1ft

| 4 (a) | Use of $z^{*}=x-\mathrm{i} y$
 $(z-\mathrm{i})\left(z^{*}-\mathrm{i}\right)=\left(x^{2}+y^{2}-1\right)-2 \mathrm{i} x$ | M1 | m1A1 | 3 |
| :---: | :--- | :---: | :---: | :--- | A1 may be earned in (b) | (b) |
| :--- |
| Equating R and I parts
 $-2 x=-8$ so $x=4$
 $16+y^{2}-1=24$ so
 $y= \pm 3(z=4 \pm 3 i)$ |

5(a)	$(5+h)^{3}=125+75 h+15 h^{2}+h^{3}$	B1	1	Accept unsimplified coefficients
(b)(i)	$y(5+h)=100+65 h+14 h^{2}+h^{3}$ Use of correct formula for gradient Gradient is $65+14 h+h^{2}$	B1ft M1 A2,1ft	4	PI; ft numerical error in (a) A1 if one numerical error made; ft numerical error already penalised
(ii)	As $h \rightarrow 0$ this $\rightarrow 65$	E2,1ft	2	E1 for ' $h=0$ '; ft wrong values for p, q, r
Total 7				

Q	Answer	Marks	Total	Comments
6(a)	$\begin{aligned} & \sum r^{2}(4 r-3)=4 \sum r^{3}-3 \sum r^{2} \ldots \\ & =4\left(\frac{1}{4}\right) n^{2}(n+1)^{2}-3\left(\frac{1}{6}\right) n(n+1)(2 n+1) \\ & =n(n+1)\left[n(n+1)-\frac{1}{2}(2 n+1)\right] \end{aligned}$ $\text { Sum }=\frac{1}{2} n(n+1)\left(2 n^{2}-1\right)$	M1 m1 m1 A1 A1	5	Splitting up the sum into two separate sums. PI by next line. Substitution of the two summations from FB Taking out common factors n and $n+1$. Remaining expression eg our [...] in ACF not just simplified to AG Be convinced as form of answer is given, penalise any jumps or backward steps
(b)	$\left.\begin{array}{l} \sum_{r=20}^{40} r^{2}(4 r-3) \\ \quad=\quad \sum_{r=1}^{40} r^{2}(4 r-3)-\sum_{r=1}^{19} r^{2}(4 r-3) \\ =20(41)(3199)-9.5(20)(721) \\ =2623180-136990 \end{array}\right\}$	M1 A1	2	Attempt to take S(19) from $\mathrm{S}(40)$ using part (a) 2486190 ; Since 'Hence’ NMS 0/2. SC $\sum_{r=1}^{40} \ldots \ldots . . \sum_{r=1}^{20} \ldots .$. clearly attempted and evaluated to 2455390 scores B1
Total 7				

| Q Answer | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |

7(a)	 Half-line with gradient < 1	B1	1	condone a short line, ie it stops at or inside circle
(b)(i)	Circle centre on L, x-coord 6 indicated touching $\operatorname{Re}(z)=0$ not at $(0,0)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	not touching Re axis
(ii)	y-coord of centre is $2 \sqrt{3}$ or $\frac{6}{\sqrt{3}}$ $\begin{aligned} & z_{0}=6+2 \sqrt{3} i \\ & k=6 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1ft } \\ \text { B1 } \end{gathered}$	3	OE; PI ft error in coords of centre
(iii)	Point z_{1} shown $\arg z_{1}=-\frac{1}{6} \pi$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	PI
Total 8				

| Q Answer | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |

8	$\begin{aligned} & \sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2} \\ & \sin \left(-\frac{5 \pi}{6}\right)=-\frac{1}{2} \end{aligned}$ Use of $2 n \pi$ Going from $4 x-\frac{2 \pi}{3}$ to x $\text { GS } x=\frac{\pi}{8}+\frac{1}{2} n \pi \text { or } x=-\frac{\pi}{24}+\frac{1}{2} n \pi$	B1 B1ft M1 m1 A1A1ft	6	OE; dec/deg penalised at 6th mark OE; ft wrong first value (or $n \pi$) at any stage including division of all terms by 4 OE; ft wrong first or second value
Total				

9(a)(i)	Asymptotes $x=3$ and $y=0$	B1,B1	2	may appear on graph			
(ii)	Complete graph with correct shape Coordinates $\left(0,-\frac{1}{3}\right)$ shown	B1	B1	2	$	$	(iii)
:---							
Correct line, $(0,-5)$ and $(2.5,0)$ shown							
(b)(i)							
$2 x^{2}-11 x+14=0$ $x=2$ or $x=3.5$							
(ii)							
$2<x<3, x>3.5$							
B1							

Q	Answer	Marks	Total	Comments

10(a)(i)	Parabola drawn passing through $(2,0)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	with x-axis as line of symmetry
(ii)	Two tangents passing through (-2, 0)	B1B1	2	to their parabola
(b)(i)	Elimination of y Correct expansion of $(x+2)^{2}$ Result	M1 B1 A1	3	convincingly shown (AG)
(ii)	Correct discriminant $16 m^{4}-8 m^{2}+1=16 m^{4}+8 m^{2}$ Result	B1 M1 A1	3	OE convincingly shown (AG)
(iii)	$\begin{aligned} & \frac{1}{16} x^{2}-\frac{3}{4} x+\frac{9}{4}=0 \\ & x=6, y= \pm 2 \end{aligned}$	M1 A1A1	3	OE
Total 13				
Total 80				

GET HELP AND SUPPORT

Visit our website for information, guidance, support and resources at oxfordaqaexams.org.uk You can contact the English subject team directly at:

E: english@oxfordaqaexams.org.uk

OXFORD

INTERNATIONAL
AQA EXAMINATIONS

OXFORD INTERNATIONAL AQA EXAMINATIONS
LINACRE HOUSE, JORDAN HILL, OXFORD, OX2 8TA
UNITED KINGDOM
enquiries@oxfordaqaexams.org.uk
oxfordaqaexams.org.uk

