OXFORD international aqa examinations	
Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

INTERNATIONAL AS FURTHER MATHEMATICS

(FM01) Further Pure Mathematics Unit 1

Specimen 2018

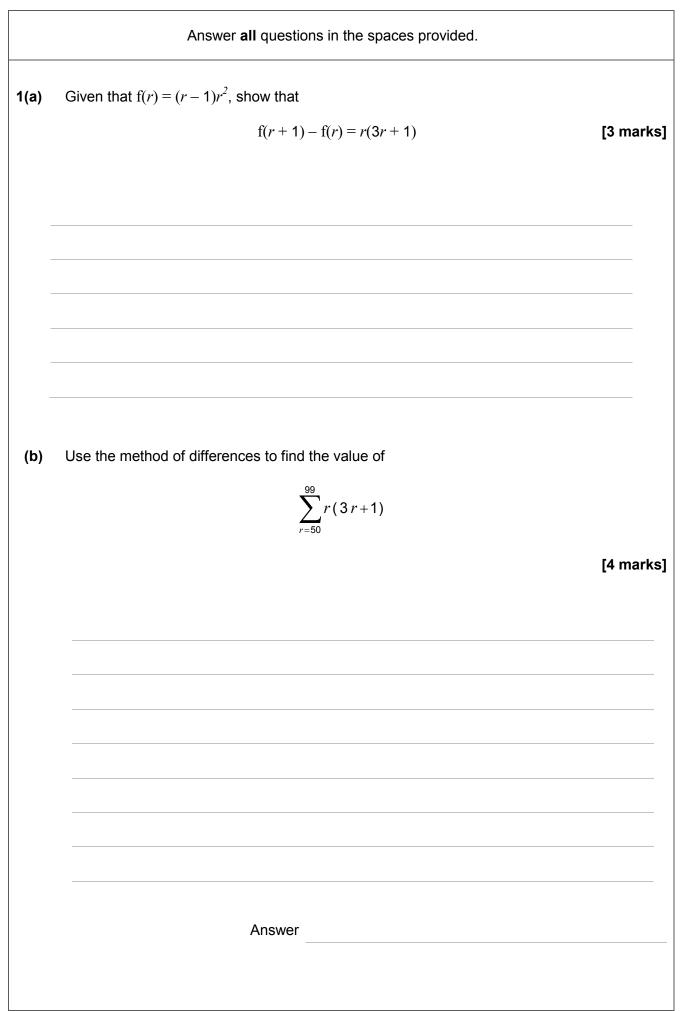
Morning

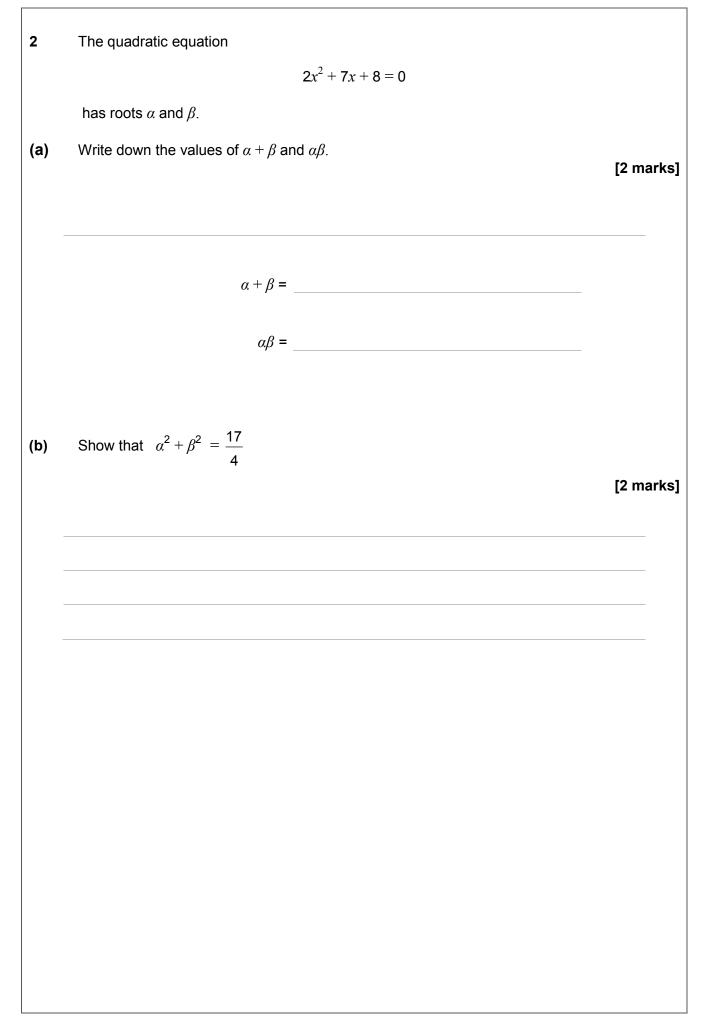
Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions


- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.


Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

(c)	Find a quadratic equation, with integer coefficients, which has roots	
	$\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$	
	$\alpha^2 \qquad \beta^2$	
		[5 marks]
-		
-		
-		
_		
=		
-		
-		
-		
	Answer	
3(a)	Find, in terms of p and q, the value of the integral $\int_{p}^{q} \frac{2}{x^{3}} dx$.	
	$J_p \chi^3$	
		[3 marks]
	Answer	[3 marks]
		[3 marks]

(b) Show that only one of the following improper integrals has a finite value, and find that value:
(i)
$$\int_{a}^{2} \frac{2}{x^{3}} dx$$

(ii) $\int_{a}^{x} \frac{2}{x^{3}} dx$
[3 marks]

ſ

٦

4	It is given that $z = x + iy$, where x and y are real.	
(a)	Find, in terms of x and y , the real and imaginary parts of	
	$(z - i)(z^* - i)$	
		[3 marks]
	Answer	
(b)	Given that	
	$(z - i)(z^* - i) = 24 - 8i$	
	find the two possible values of <i>z</i> .	[4 marks]
-		
-		
-		
-		
-		
-		
-		
	<i>z</i> =	-
	<i>z</i> =	

5 (a)	Ехра	and (5 + <i>h</i>) ³ [1 ma	ark]
		[
_			
		Answer	
(b) A	curve has equation $y = x^3 - x^2$	
	(i)	Find the gradient of the line passing through the point (5, 100) and the point on the curve for which $x = 5 + h$. Give your answer in the form	9
		$p + qh + rh^2$	
		where p, q and r are integers. [4 mar	ˈks]
_			
_			
_			
_			
_			
_			
_			
		Answer	

7

(b) (ii) Show how the answer to part (b)(i) can be used to find the gradient of the curve at the point (5, 100). State the value of this gradient.

[2 marks]

gradient =

7	(a)	Draw on an Argand diagram the locus L of points satisfying the equation arg $z =$	$\frac{\pi}{6}$.
			[1 mark]
	(b) (i)	A circle <i>C</i> of radius 6 has its centre lying on <i>L</i> and touches the line $\text{Re}(z)$ = Draw <i>C</i> on the same Argand diagram.	0.
			2 marks]
	(b) (ii)		[3 marks]
		Answer	

(b) (ii	i) The complex number z_1 lies on <i>C</i> and is such that arg z_1 has its least possible value. Find arg z_1 , giving your answer in the form $p\pi$, where -1).
	[2 m	narks]
-		_
-		_
-		_
-		_
-		_
	Answer	
8	Find the general solution of the equation	
	$\sin(4x-\frac{2\pi}{3})=-\frac{1}{2}$	
	giving your answer in terms of π .	4-07
	[6 mar	ĸsj
-		_
-		_
-		_
-		_
-		_
-		_
-		_
-		_
-		_
-		_
	Answer	
	Answer	

9	(a) (i)	Write down the equations of the two asymptotes of the curve $y = \frac{1}{x-3}$.
		[2 marks]
	(a) (ii)	Sketch the curve $y = \frac{1}{x-3}$, showing the coordinates of any points of intersection with the coordinate axes.
		[2 marks]
	(a) (iii)	On the same axes, again showing the coordinates of points of intersection with the coordinate axes, sketch the line $y = 2x - 5$. [1 mark]

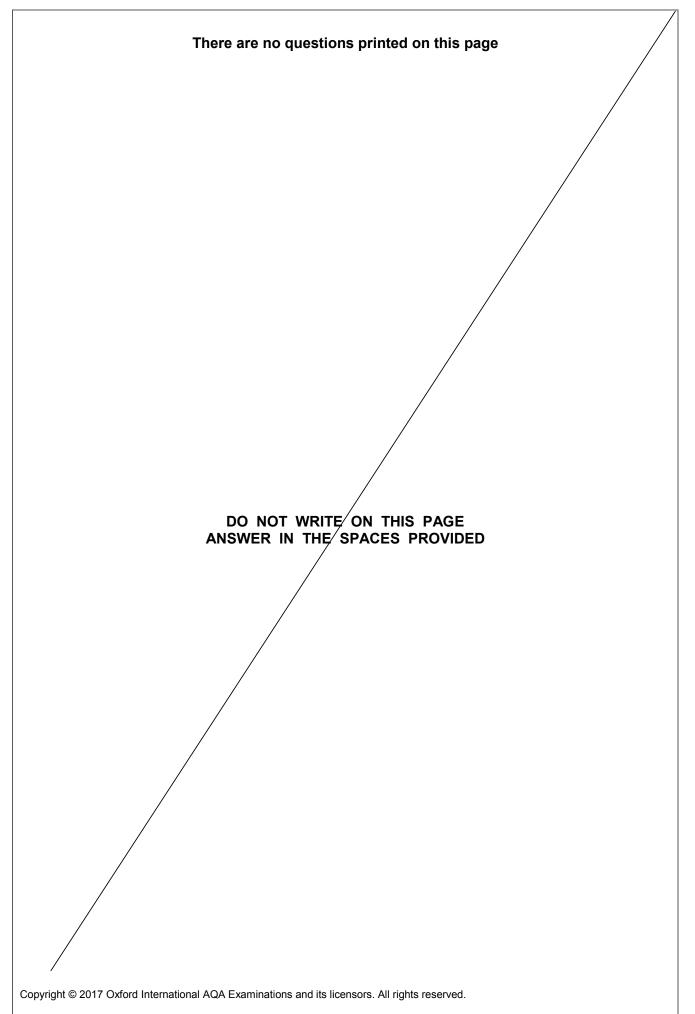
(b) (i) Solve the equation $\frac{1}{x-3}=2x-5$ [3 marks] Answer (b) (ii) Find the solution of the inequality $\frac{1}{x-3} < 2x-5$ [2 marks] Answer

10 A parabola *P* has equation
$$y^2 = x - 2$$

(a) (i) Sketch the parabola *P*.

[2 marks]

(a) (ii) On your sketch, draw the two tangents to P which pass through the point (-2, 0).


[2 marks]

(b) (i) Show that, if the line y = m(x+2) intersects *P*, then the *x*-coordinates of the points of intersection must satisfy the equation

 $m^2 x^2 + (4m^2 - 1)x + (4m^2 + 2) = 0$

[3 marks]

(b) (ii)	Show that, if this equation has equal roots, then	
	$16m^2 = 1$	
		[3 marks
(b) (iii)	Hence find the coordinates of the points at which the tangents to P for $(-2, 0)$ touch the parabola P .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to P for $(-2, 0)$ touch the parabola P .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to P for $(-2, 0)$ touch the parabola P .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to <i>P</i> fr (–2, 0) touch the parabola <i>P</i> .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to P for $(-2, 0)$ touch the parabola P .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to P for $(-2, 0)$ touch the parabola P .	rom the point [3 marks
(b) (iii)	Hence find the coordinates of the points at which the tangents to <i>P</i> from (-2, 0) touch the parabola <i>P</i> .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to P from (-2, 0) touch the parabola P .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to <i>P</i> fr (-2, 0) touch the parabola <i>P</i> .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to <i>P</i> fr (-2, 0) touch the parabola <i>P</i> .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to <i>P</i> from (-2, 0) touch the parabola <i>P</i> .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to <i>P</i> from (-2, 0) touch the parabola <i>P</i> .	
(b) (iii)	(-2, 0) touch the parabola <i>P</i> .	
(b) (iii)	Hence find the coordinates of the points at which the tangents to P fr (-2, 0) touch the parabola P.	
b) (iii)	(-2, 0) touch the parabola <i>P</i> .	

