OXFORD

INTERNATIONAL
AQA EXAMINATIONS

Please write clearly in block capitals.

Centre number \square Candidate number \square
Surname
Forename(s)
Candidate signature

INTERNATIONAL AS FURTHER MATHEMATICS

(FM01) Further Pure Mathematics Unit 1

Specimen 2018
Morning
Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions in the spaces provided.

1(a) Given that $\mathrm{f}(r)=(r-1) r^{2}$, show that

$$
\mathrm{f}(r+1)-\mathrm{f}(r)=r(3 r+1)
$$

(b) Use the method of differences to find the value of

$$
\sum_{r=50}^{99} r(3 r+1)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

2 The quadratic equation

$$
2 x^{2}+7 x+8=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.

$$
\begin{array}{r}
\alpha+\beta= \\
\alpha \beta=
\end{array}
$$

(b) Show that $\alpha^{2}+\beta^{2}=\frac{17}{4}$
\qquad
\qquad
\qquad
\qquad
(c) Find a quadratic equation, with integer coefficients, which has roots

$$
\frac{1}{\alpha^{2}} \text { and } \frac{1}{\beta^{2}}
$$

Answer

3(a) Find, in terms of p and q, the value of the integral $\int_{p}^{q} \frac{2}{x^{3}} \mathrm{~d} x$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
(b) Show that only one of the following improper integrals has a finite value, and find that value:
(i) $\quad \int_{0}^{2} \frac{2}{x^{3}} \mathrm{~d} x$
(ii) $\quad \int_{2}^{\infty} \frac{2}{x^{3}} \mathrm{~d} x$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 It is given that $z=x+\mathrm{i} y$, where x and y are real.
(a) Find, in terms of x and y, the real and imaginary parts of

$$
(z-\mathrm{i})\left(z^{*}-\mathrm{i}\right)
$$

Answer

(b) Given that

$$
(z-\mathrm{i})\left(z^{*}-\mathrm{i}\right)=24-8 \mathrm{i}
$$

find the two possible values of z.

$$
\begin{aligned}
& z= \\
& z=
\end{aligned}
$$

5 (a) Expand $(5+h)^{3}$

Answer

(b) A curve has equation $y=x^{3}-x^{2}$
(i) Find the gradient of the line passing through the point $(5,100)$ and the point on the curve for which $x=5+h$. Give your answer in the form

$$
p+q h+r h^{2}
$$

where p, q and r are integers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
(b) (ii) Show how the answer to part (b)(i) can be used to find the gradient of the curve at the point $(5,100)$. State the value of this gradient.

6 (a) Use the formulae for $\sum_{r=1}^{n} r^{2}$ and $\sum_{r=1}^{n} r^{3}$ to show that

$$
\sum_{r=1}^{n} r^{2}(4 r-3)=k n(n+1)\left(2 n^{2}-1\right)
$$

where k is a constant.
\qquad
(b) Hence evaluate

$$
\sum_{r=20}^{40} r^{2}(4 r-3)
$$

7 (a) Draw on an Argand diagram the locus L of points satisfying the equation $\arg z=\frac{\pi}{6}$.
(b) (i) A circle C of radius 6 has its centre lying on L and touches the line $\operatorname{Re}(z)=0$. Draw C on the same Argand diagram.
(b) (ii) Find the equation of C, giving your answer in the form $\left|z-z_{0}\right|=k$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
(b) (iii) The complex number z_{1} lies on C and is such that arg z_{1} has its least possible value. Find $\arg z_{1}$, giving your answer in the form $p \pi$, where $-1<p \leq 1$

Answer

8 Find the general solution of the equation

$$
\sin \left(4 x-\frac{2 \pi}{3}\right)=-\frac{1}{2}
$$

giving your answer in terms of π.
\qquad

Answer

9 (a) (i) Write down the equations of the two asymptotes of the curve $y=\frac{1}{x-3}$.
\qquad
\qquad
\qquad
(a) (ii) Sketch the curve $y=\frac{1}{x-3}$, showing the coordinates of any points of intersection with the coordinate axes.
(a) (iii) On the same axes, again showing the coordinates of points of intersection with the coordinate axes, sketch the line $y=2 x-5$.
(b) (i) Solve the equation

$$
\frac{1}{x-3}=2 x-5
$$

Answer

(b) (ii) Find the solution of the inequality

$$
\frac{1}{x-3}<2 x-5
$$

\qquad
\qquad
\qquad
\qquad

Answer
$10 \quad$ A parabola P has equation $y^{2}=x-2$
(a) (i) Sketch the parabola P.
(a) (ii) On your sketch, draw the two tangents to P which pass through the point $(-2,0)$.
(b) (i) Show that, if the line $y=m(x+2)$ intersects P, then the x-coordinates of the points of intersection must satisfy the equation

$$
m^{2} x^{2}+\left(4 m^{2}-1\right) x+\left(4 m^{2}+2\right)=0
$$

\qquad
\qquad
\qquad
\qquad
\qquad
(b) (ii) Show that, if this equation has equal roots, then

$$
16 m^{2}=1
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (iii) Hence find the coordinates of the points at which the tangents to P from the point $(-2,0)$ touch the parabola P.

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

