OXFORD

INTERNATIONAL AQA EXAMINATIONS

(9665)

Mark scheme

Further pure statistics and mechanics Unit 1

Specimen

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Key to mark scheme abbreviations

M	Mark is for method
\mathbf{m}	Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy
B Mark is independent of M or marks and is for method and accuracy
E Mark is for explanation
\checkmark or ft Follow through from previous incorrect result
CAO Correct answer only
CSO Correct solution only
AWFW Anything which falls within
AWRT Anything which rounds to
ACF Any correct form
AG Answer given
SC Special case
OE Or equivalent
A2, 12 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE \quad Deduct x marks for each error
NMS No method shown
PI Possibly implied
SCA Substantially correct approach
sf Significant figure(s)
dp Decimal place(s)

No method shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\mathbf{Q}	Answer	Marks	Comments

1	$h y^{\prime}(9)=0.25 \times \frac{1}{2+\sqrt{9}}(=0.05)$	M1	Attempt to find $h y^{\prime}(9)$.
	$\{y(9.25)\} \approx 6+0.05=6.05$	A1	6.05 OE
	$\begin{aligned} \{y(9.5)\} & \approx y(9.25)+0.25 \times y^{\prime}(9.25) \\ & \approx 6.05+0.25 \times \frac{1}{2+\sqrt{9.25}} \\ & \approx 6.05+0.25 \times 0.1983(5 \ldots) \end{aligned}$	m1	Attempt to find $y(9.25)+0.25 \times y^{\prime}(9.25)$, must see evidence of numerical expression if correct $\mathrm{ft}[0.049(5 .)+$.c 's $y(9.25)]$ value is not obtained.
	$\approx 6.05+0.0495(8 \ldots .$.	A1ft	PI ; ft on their value for $y(9.25)$; 4 dp value (rounded or truncated) or better.
	$y(9.5)=6.0996$ (to 4 d.p.)	A1	$y(9.5)=6.0996$
	Total	5	

In this question, misreads lose all the A marks that are affected

\mathbf{Q}	Answer	Marks	Comments

\mathbf{Q}	Answer	Marks	Comments

$3(a)$	Use of one law of logs or exponentials $\log a=c$ and $\log b=m$ So $a=10^{c}$ and $b=10^{m}$	M1 A1 A1	OE, both needed
3(b)	Points (1, 1.08), $(5,1.43)$ plotted Straight line drawn through points	$\begin{gathered} \text { M1A1 } \\ \text { A1ft } \end{gathered}$	M1A0 if one point correct ft small inaccuracy
3(c)(i)	Attempt at antilog of $Y(3)$ When $x=3, Y \approx 1.25$ so $y \approx 18$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	OE Allow AWRT 18
3(c)(ii)	Attempt at a as antilog of Y-intercept $a \approx 9.3$ to 10	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	OE AWRT
Total		10	

4(a)	Determinant of matrix $=-8+9=1$ Area $=3 \times 1=3$ (square units)	M1 A1	Finding determinant and multiplying by area CAO must show multiplication or refer to scale factor/invariant area or equivalent
4(b)(i)	$\begin{aligned} & {\left[\begin{array}{cc} 4 & 3 \\ -3 & -2 \end{array}\right]\left[\begin{array}{c} x \\ m x+c \end{array}\right]=\left[\begin{array}{l} x^{\prime} \\ y^{\prime} \end{array}\right]} \\ & \Rightarrow \\ & \left(x^{\prime}\right)=4 x+3(m x+c) \\ & \left(y^{\prime}\right)=-3 x-2(m x+c) \end{aligned}$ Invariant lines $\Rightarrow y^{\prime}=m x^{\prime}+c$ $\begin{aligned} & \Rightarrow-3 x-2 m x-2 c=4 m x+3 m^{2} x+3 m c+c \\ & \Rightarrow 0=\left(3 m^{2}+6 m+3\right) x+3 m c+3 c \end{aligned}$	M1 A1	x^{\prime}, y^{\prime} in terms of x, y, m, c Use of $y^{\prime}=m x^{\prime}+c$
	$\begin{aligned} & \Rightarrow 3 m^{2}+6 m+3=0 \quad 3 m c+3 c=0 \\ & 3(m+1)^{2}=0 \quad 3 c(m+1)=0 \\ & \Rightarrow m=-1 \quad c \text { can be any value } \\ & \Rightarrow \text { lines are } y=-x+c \end{aligned}$	M1 A1 A1	Attempt at solving equations where coefficients $=0$ or compares coefficients Finding the correct value of m Fully correct line - no restriction on c

\mathbf{Q}	Answer	Marks	Comments

4(b)(ii)	When $c=0, y=-x$ is a line of invariant points SPECIAL CASES - (b)(i) $\begin{aligned} & \left(\begin{array}{cc} 4 & 3 \\ -3 & -2 \end{array}\right)\binom{x}{-x+c}=\binom{x+3 c}{-x-2 c} \\ & x^{\prime}=x+3 c \\ & y^{\prime}=-x-2 c \end{aligned}$ Consider $\begin{aligned} & -x^{\prime}+c \\ & =-(x+3 c)+c \\ & =-x-3 c+c \\ & =-x-2 c \\ & =y^{\prime} \end{aligned}$ Hence $y=-x+c$ is an invariant line	B1	Any equivalent form SC1 Correct multiplication as shown SC2 correct multiplication as shown above and full algebraic solution using $y^{\prime}=-x^{\prime}+c$
	Total	8	

Q	Answer	Marks	Comments

5(a)	$\begin{aligned} & \text { Let } \mathrm{f}(x)=24 x^{3}+36 x^{2}+18 x-5 \\ & \mathrm{f}(0.1)=-2.816, \mathrm{f}(0.2)=0.232 \end{aligned}$	M1	Both attempted and at least one evaluated correctly to at least 1sf rounded or truncated OE fraction
	Change of sign so α lies between 0.1 and 0.2	A1	Need both evaluations correct to above degree of accuracy and 'change of sign OE' and relevant reference to 0.1 and 0.2
5(b)	$\mathrm{f}(0.15)=-1.409(<0$ so root $>0.15)$	M1	$\mathrm{f}(0.15)$ considered first
	$\mathrm{f}(0.175) \approx-0.619(<0$ so root $>0.175)$	A1	$f(0.15)$ then $f(0.175)$ both evaluated correctly to at least 1sf OE fractions
	α lies between 0.175 and 0.2	A1	Dependent on both previous marks gained and no other additional evaluations other than at 0.15 and 0.175
5(c)	$\mathrm{f}^{\prime}(x)=72 x^{2}+72 x+18$	B1	PI
	$\begin{aligned} & \left(x_{2}=\right) \\ & 0.2-\frac{24(0.2)^{3}+36(0.2)^{2}+18(0.2)-5}{72(0.2)^{2}+72(0.2)+18} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	B1 for numerator in correct formula B1 for denominator in correct formula
	$=0.1934$ (to 4dp)	B1	CAO Must be 0.1934 Do not apply ISW NMS scores 0/4
	Total	9	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

6(a)	$\begin{aligned} P(U)= & (0.40 \times 0.15)+(0.45 \times 0.05)+ \\ & (0.15 \times 0.10) \end{aligned}$	M1	≥ 2 terms correct; may be implied
	$\begin{aligned} = & 0.06+0.0225+0.015= \\ & \mathbf{0 . 0 9 7} \text { to } 0.098 \end{aligned}$	A1	AWFW (0.0975)
6(b)	$\begin{aligned} P(D \mid U) & =\frac{P(D \cap U)}{P(U)}=\frac{0.40 \times 0.15}{\text { their (a) }} \\ & =\frac{0.06}{0.0975}=\mathbf{0 . 6 1 2} \text { to } 0.619 \end{aligned}$	M1 A1	May be implied AWFW (0.61538)
6(c)	$\begin{aligned} P(S \mid O) & =\frac{0.15 \times(1-0.10)}{1-\text { their }(\mathbf{a})}=\frac{0.135}{0.9025} \\ & =\mathbf{0 . 1 4 9} \text { to } 0.15 \end{aligned}$	M1 M1 A1	Numerator Denominator AWFW (0.14958)
	Total	7	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

7(a)	$\begin{aligned} \mathrm{E}(X) & =\sum x \mathrm{P}(X=x) \\ & =\sum_{x=1}^{3 n} \frac{x}{3 n}=\frac{1}{3 n} \sum_{x=1}^{3 n} x \\ & =\frac{1}{3 n}\left(\frac{3 n(3 n+1)}{2}\right) \\ & =\frac{3 n+1}{2} \end{aligned}$	M1 m1 A1	Ignore limits Sum of first $3 n$ integers Fully correct and complete derivation
7(b)	$\begin{aligned} & \mathrm{E}(X)=14 \text { and } \operatorname{Var}(X)=\frac{728}{12}=\frac{182}{3} \\ & =60 . \dot{6} \\ & \mathrm{E}(X)+\sqrt{\operatorname{Var}(X)}=14+7.7 \dot{8}=21.8 \\ & \mathrm{P}(X<21.8)=\frac{21}{27} \text { or } \frac{7}{9} \end{aligned}$	B1 M1 A1	Both CAO and CAO/AWRT oe Use of $\mathrm{E}(X)+\sqrt{\operatorname{Var}(X)}$ CAO
	Total	6	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

8(a)	$\begin{aligned} & \mathrm{G}_{u}(t)=\mathrm{E}\left(t^{u}\right)=\sum t^{u}\binom{n}{u} p^{u} q^{n-u} \\ & \begin{aligned} q= & -p \\ & =\sum_{u=0}^{n}\binom{n}{u}(p t)^{u} q^{n-u} \\ & =(q+p t)^{n} \end{aligned} \end{aligned}$	M1 m1 A1	Allow x instead of u and no definition of q Combining terms and correct limits Fully correct and complete derivation
8(b)(i)	$\begin{aligned} & \mathrm{G}_{w}(t)=(q+p t)^{2 n} \\ & \mathrm{G}_{w}(t)=\mathrm{G}_{u}(t) \times \mathrm{G}_{v}(t) \\ & =(q+p t)^{n} \times(q+p t)^{2 n}=(q+p t)^{3 n} \end{aligned}$	B1 M1 A1	Used
8(b)(ii)	$W \sim \mathrm{~B}(3 n, p)$	B1	oe
	Total	7	

| Q Answer | Marks | Comments |
| :---: | :---: | :---: | :---: |

9(a)	$\tan \alpha=\frac{4}{3}$ or $\cos \alpha=\frac{3}{5}$ or $\sin \alpha=\frac{4}{5}$ $\alpha=53.1^{\circ}$	M1 A1	M1 Trig equation to find the angle with: cos with 3 or 4 in the numerator and 5 in denominator sin with 3 or 4 in the numerator and 5 in denominator tan with 3 and 4 in any position A1: Correct angle from correct working. (Allow $\left.90-36.9=53.1^{\circ}\right)$.
Final answer must be 53.1			
Note, for example, $\tan ^{-1} \frac{4}{3}=53.1$ scores			
M1A1			

Q	Answer	Marks	Comments

9(b)	$\begin{aligned} & 4^{2}=3^{2}+v^{2}-2 \times 3 \times v \times \cos (180-53.1 \ldots) \\ & v^{2}+3.6 v-7=0 \\ & v=1.40 \text { or } v=-5.00 \\ & v=1.40 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ OR $\begin{aligned} & \frac{\sin (180-53.13)}{4}=\frac{\sin \theta}{3} \\ & \theta=36.87^{\circ} \\ & 180-36.87-126.87=16.26^{\circ} \\ & \frac{v}{\sin 16.26^{\circ}}=\frac{4}{\sin (180-53.13)} \text { OR } \frac{3}{\sin 36.87^{\circ}} \\ & v=1.40 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1A1 } \\ \text { A1 } \\ \text { m1 } \\ \text { A1 } \\ \\ \text { (B1) } \\ \text { (M1A1) } \\ \text { (A1) } \\ \text { (m1) } \\ \text { (A1) } \end{gathered}$	(Note diagram not needed for the award of marks) B1 For seeing 180-53.1 (= 126.9). M1 Using cosine rule with $3,4, v$ and any angle. Must see v and v^{2}. A1 Correct equation. A1 Correct simplified quadratic. m1 Solving the quadratic. A1 Selecting positive root. (Can be implied.) Accept 1.4 or 1.39 B1 For seeing 180-53.1 (= 126.9). M1 Using sine rule with 3,4 and 126.9°. A1 Correct equation. A1 For finding 16.26. Accept 16.3 or 16.2 or 16.26... . m 1 Second application of sine rule with v and 3 or 4 with at least one correct angle. A1 Correct velocity. Accept 1.4 or 1.39 . Note: the result below can be proved. $v=4 \sin \alpha-3 \cos \alpha$ SC4 seeing $4 \sin \alpha-3 \cos \alpha$ with incorrect answer. SC6 seeing $4 \sin \alpha-3 \cos \alpha$ with answer as 1.4 or 1.39 .
	Total	8	

Q	Answer	Marks	Comments
10	Dimension of g is LT^{-2} Dimension of s is L Dimension of h is L Dimension of m_{1} and m_{2} is M Dimension of $\frac{g}{s}\left[s\left(m_{1}+m_{2}\right)+\frac{h m_{1}{ }^{2}}{m_{1}+m_{2}}\right]$ is $\frac{\mathrm{LT}^{-2}}{\mathrm{~L}}\left[\mathrm{LM}+\frac{\mathrm{LM}^{2}}{\mathrm{M}}\right] \cong \mathrm{MLT}^{-2}+\mathrm{MLT}^{-2}$ $\cong \mathrm{MLT}^{-2}$ which is a force	$\{\mathrm{B} 1$ M1 A1 B1	B1 for dimensions of the five quantities Correct substitution of dimension
	Total	4	

Q	Answer	Marks	Comments

11(a)	$\begin{aligned} & m(4 u)+3 m(2 u)=m v_{A}+3 m v_{B} \\ & \frac{v_{B}-v_{A}}{4 u-2 u}=e \\ & \left(\begin{array}{l} v_{A}+3 v_{B}=10 u \\ v_{B}-v_{A}=2 u e \\ 4 v_{B}=2 u e+10 u \end{array}\right) \\ & v_{B}=\frac{u}{2}(e+5) \\ & \left(v_{A}=\frac{u}{2}(e+5)-2 u e\right) \\ & v_{A}=\frac{u}{2}(-3 e+5) \end{aligned}$	M1 A1 M1 A1 A1 A1	M1 for four correct momentum terms with any signs. A1 for all correct M1 for correct terms for any signs, A1 for all correct. OE, simplified OE, simplified
11(b)	$\begin{aligned} e \leq 1 & \Rightarrow v_{B} \leq \frac{u}{2}(1+5) \\ & \Rightarrow v_{B} \leq 3 u \end{aligned}$	M1 A1	Use of $e \leq 1$ (OE) needed FT their v_{B}
	Total	8	

GET HELP AND SUPPORT

Visit our website for information, guidance, support and resources at oxfordaqaexams.org.uk You can contact the English subject team directly at:

E: english@oxfordaqaexams.org.uk

OXFORD

INTERNATIONAL AQA EXAMINATIONS

OXFORD INTERNATIONAL AQA EXAMINATIONS
LINACRE HOUSE, JORDAN HILL, OXFORD, OX2 8TA
UNITED KINGDOM
enquiries@oxfordaqaexams.org.uk oxfordaqaexams.org.uk

