

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665)

Mark scheme

Further pure statistics and mechanics Unit 1

Specimen

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Key to mark scheme abbreviations

Μ	Mark is for method
m	Mark is dependent on one or more M marks and is for method
Α	Mark is dependent on M or m marks and is for accuracy
В	Mark is independent of M or m marks and is for method and accuracy
E	Mark is for explanation
\checkmark or ft	Follow through from previous incorrect result
CAO	Correct answer only
CSO	Correct solution only
AWFW	Anything which falls within
AWRT	Anything which rounds to
ACF	Any correct form
AG	Answer given
SC	Special case
OE	Or equivalent
A2, 1	2 or 1 (or 0) accuracy marks
–x EE	Deduct <i>x</i> marks for each error
NMS	No method shown
PI	Possibly implied
SCA	Substantially correct approach
sf	Significant figure(s)
dp	Decimal place(s)

No method shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Answer		Marks	Comments
1	$h y'(9) = 0.25 \times \frac{1}{2 + \sqrt{9}}$ (= 0.05)		M1	Attempt to find $h y'(9)$.
	$\{ y (9.25) \} \approx 6 + 0.05 = 6.05$		A1	6.05 OE
	$\{y(9.5)\} \approx y(9.25) + 0.25 \times y^{/}$ $\approx 6.05 + 0.25 \times \frac{1}{2 + \sqrt{5}}$ $\approx 6.05 + 0.25 \times 0.1983$	(9.25) 9.25 9(5)	m1	Attempt to find $y(9.25)+0.25 \times y^{/}$ (9.25), must see evidence of numerical expression if correct ft [0.049(5)+c's y(9.25)] value is not obtained.
	≈ 6.05 + 0.0495(8)		A1ft	PI; ft on their value for $y(9.25)$; 4 dp value (rounded or truncated) or better.
	y(9.5) = 6.0996 (to 4 d.p.)		A1	y(9.5) = 6.0996
		Total	5	

In this question, misreads lose all the A marks that are affected

Q	Answer		Marks	Comments
2(a)(i)	<i>y</i> ▲ 5 -		D1	Rectangle with
	_		Ы	vertices (0, 0), (0, −3), (2, −3), (2, 0)
2(a)(ii)	R_1	10 x	M1 A2,1	Rectangle with vertices either whose <i>x</i> -coords are their (a)(i) <i>x</i> -coord vertices multiplied by 4 or whose <i>y</i> -coords are their (a)(i) <i>y</i> -coord vertices multiplied by 2
	- "3			
	-5			(0, 0) $(0, 0)$ $(0, -0)$ $(0, -0)$ $(0, 0)$
	J			or the four <i>y</i> -coords are correct)
2(b)(i)	Matrix is $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$		B1	
2(b)(ii)	$\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} =$		M1	Attempt to multiply $\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$ with their (b)(i) matrix in either order.
			m1	Multiplication in correct order with at least two of the four ft multiplications carried out correctly.
	$\begin{bmatrix} 0 & 4 \\ -2 & 0 \end{bmatrix}$			For $\begin{bmatrix} 0 & 4 \\ -2 & 0 \end{bmatrix}$
			A1	$\begin{bmatrix} NMS \\ -2 & 0 \end{bmatrix}$ scores B3 $\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$ scores B1
		Total	8	

Q	Answer		Marks	Comments
3(a)	Use of one law of logs or expor	entials	M1	
	log $a = c$ and log $b = m$		A1	OE, both needed
	So $a = 10^{c}$ and $b = 10^{m}$		A1	
3(b)	Points (1, 1.08), (5, 1.43) plotte	d	M1A1	M1A0 if one point correct
	Straight line drawn through poir	nts	A1ft	ft small inaccuracy
3(c)(i)	Attempt at antilog of Y(3)		M1	OE
	When $x = 3$, $Y \approx 1.25$ so $y \approx 18$		A1	Allow AWRT 18
3(c)(ii)	Attempt at a as antilog of Y-inte	rcept	M1	OE
	$a \approx 9.3$ to 10		A1	AWRT
		Total	10	

4(a)	Determinant of matrix = $-8 + 9 = 1$ Area = $3 \times 1 = 3$ (square units)	M1	Finding determinant and multiplying by area
		A1	CAO must show multiplication or refer to scale factor/invariant area or equivalent
4(b)(i)	$\begin{bmatrix} 4 & 3 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} x \\ mx+c \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$ \Rightarrow $(x') = 4x + 3(mx+c)$ $(y') = -3x - 2(mx+c)$	M1	x', y' in terms of x, y, m, c
	Invariant lines $\Rightarrow y' = mx' + c$ $\Rightarrow -3x - 2mx - 2c = 4mx + 3m^2x + 3mc + c$ $\Rightarrow 0 = (3m^2 + 6m + 3)x + 3mc + 3c$	A1	Use of $y' = mx' + c$
	$\Rightarrow 3m^{2} + 6m + 3 = 0 \qquad 3mc + 3c = 0$ $3(m+1)^{2} = 0 \qquad 3c(m+1) = 0$	M1	Attempt at solving equations where coefficients = 0 or compares coefficients
	$\Rightarrow m = -1$ c can be any value	A1	Finding the correct value of m
	\Rightarrow lines are $y = -x + c$	A1	Fully correct line – no restriction on c

Q	Answer	Marks	Comments
		· · · · · · · · · · · · · · · · · · ·	
4(b)(ii)	When $c = 0$, $y = -x$ is a line of invarian points SPECIAL CASES – (b)(i)	t B1	Any equivalent form
	$\begin{pmatrix} 4 & 3 \\ -3 & -2 \end{pmatrix} \begin{pmatrix} x \\ -x+c \end{pmatrix} = \begin{pmatrix} x+3c \\ -x-2c \end{pmatrix}$		SC1 Correct multiplication as shown
	x' = x + 3c $y' = -x - 2c$		
	Consider -x'+c $= -(x+3c)+c$ $= -x-3c+c$ $= -x-2c$ $= y'$ Hence $y = -x + c$ is an invariant line		SC2 correct multiplication as shown above and full algebraic solution using y' = -x' + c
	Total	8	

Q	Answer	Marks	Comments
5(a)	Let $f(x) = 24 x^3 + 36 x^2 + 18 x - 5$	M1	Both attempted and at least one evaluated correctly to at least 1sf
	f(0.1) = -2.816, f(0.2) = 0.232		rounded or truncated OE fraction
	Change of sign so α lies between 0.1 and 0.2	A1	Need both evaluations correct to above degree of accuracy and 'change of sign OE' and relevant reference to 0.1 and 0.2
5(b)	$f(0.15) = -1.409 \ (< 0 \ \text{so root} > 0.15)$	M1	f(0.15) considered first
	$f(0.175) \approx -0.619 \ (< 0 \ so \ root > 0.175)$	A1	f(0.15) then $f(0.175)$ both evaluated correctly to at least 1sf OE fractions
	lpha lies between 0.175 and 0.2	A1	Dependent on both previous marks gained and no other additional evaluations other than at 0.15 and 0.175
5(c)	$f'(x) = 72x^2 + 72x + 18$	B1	PI
	(r -)		
	$(x_2 - y)$ 24(0.2) ³ + 36(0.2) ² + 18(0.2) - 5	B1	B1 for numerator in correct formula
	$0.2 - \frac{1}{72(0.2)^2 + 72(0.2) + 18}$	B1	B1 for denominator in correct formula
		_	CAO Must be 0.1934
	= 0.1934 (to 4dp)	B1	Do not apply ISW
			NMS scores 0/4
	Total	9	

Q	Answer	Marks	Comments
			·
6(a)	$P(U) = (0.40 \times 0.15) + (0.45 \times 0.05) + (0.15 \times 0.10)$	M1	\geq 2 terms correct; may be implied
	= 0.06 + 0.0225 + 0.015 = 0.097 to 0.098	A1	AWFW (0.0975)
6(b)	$P(D \mid U) = \frac{P(D \cap U)}{P(U)} = \frac{0.40 \times 0.15}{\text{their (a)}}$	M1	May be implied
	$=\frac{0.06}{0.0975}=0.612 \text{ to } 0.619$	A1	AWFW (0.61538)
6(c)	$P(S \mid O) = \frac{0.15 \times (1 - 0.10)}{1 - \text{their (a)}} = \frac{0.135}{0.9025}$	M1 M1	Numerator Denominator
	= 0.149 to 0.15	A1	AWFW (0.14958)
	Total	7	

Q	Answer	Marks	Comments
7(a)	$E(X) = \sum x P(X = x)$		
	$= \sum_{x=1}^{3n} \frac{x}{3n} = \frac{1}{3n} \sum_{x=1}^{3n} x$	M1	Ignore limits
	$=\frac{1}{3n}\left(\frac{3n(3n+1)}{2}\right)$	m1	Sum of first 3 <i>n</i> integers
	$=\frac{3n+1}{2}$	A1	Fully correct and complete derivation
7(b)	$E(X) = 14$ and $Var(x) = \frac{728}{12} = \frac{182}{3}$	B1	Both CAO and CAO/AWRT oe
	= 60.6		
	$E(X) + \sqrt{Var(X)} = 14 + 7.78 = 21.8$	M1	Use of $E(X) + \sqrt{Var(X)}$
	$P(X < 21.8) = \frac{21}{27}$ or $\frac{7}{9}$	A1	CAO
	Total	6	

Q	Answer		Marks	Comments
8(a)	$G_{\mathcal{U}}(t) = E(t^{\mathcal{U}}) = \sum t^{\mathcal{U}} \binom{n}{\mathcal{U}} p^{\mathcal{U}}$	q ⁿ - u	M1	Allow x instead of u and no definition of q
	$q = 1 - p$ $= \sum_{n=1}^{n} {n \choose u} (pt)^{u} q^{n-u}$		m1	Combining terms and correct limits
	$u = 0 (q + pt)^n$		A1	Fully correct and complete derivation
8(b)(i)	$G_{W}(t) = (q + pt)^{2n}$		B1	
	$G_{\mathcal{W}}(t) = G_{\mathcal{U}}(t) \times G_{\mathcal{V}}(t)$		M1	Used
	$= (q + pt)^n \times (q + pt)^{2n} = (q + pt)^{2n}$	pt) ³ⁿ	A1	
8(b)(ii)	$W \sim B(3n, p)$		B1	ое
		Total	7	

Q	Answer	Marks	Comments
9(a)	$\tan \alpha = \frac{4}{2}$ or $\cos \alpha = \frac{3}{2}$ or $\sin \alpha = \frac{4}{2}$	M1	M1 Trig equation to find the angle with:
	$\alpha = 53.1^{\circ}$ AG	A1	cos with 3 or 4 in the numerator and 5 in denominator
			sin with 3 or 4 in the numerator and 5 in denominator
			tan with 3 and 4 in any position
			A1: Correct angle from correct working. (Allow $90 - 36.9 = 53.1^{\circ}$).
			Final answer must be 53.1
			Note, for example, $\tan^{-1}\frac{4}{3} = 53.1$ scores M1A1

Q	Answer	Marks	Comments
		-	
9(b)	$\frac{4}{3}$ $4^{2} = 3^{2} + v^{2} - 2 \times 3 \times v \times \cos(180 - 53.1)$	M1 A1 B1	(Note diagram not needed for the award of marks) B1 For seeing 180 – 53.1 (= 126.9).
	$v^{2} + 3.6v - 7 = 0$ v = 1.40 or $v = -5.00v = 1.40$ m s ⁻¹ OR	M1A1 A1 m1 A1	 M1 Using cosine rule with 3, 4, <i>v</i> and any angle. Must see <i>v</i> and <i>v</i>². A1 Correct equation. A1 Correct simplified quadratic. m1 Solving the quadratic. A1 Selecting positive root. (Can be implied.) Accept 1.4 or 1.39
	$\frac{\sin(180-53.13)}{4} = \frac{\sin\theta}{3}$ $\theta = 36.87^{\circ}$ $180-36.87-126.87 = 16.26^{\circ}$ $\frac{v}{\sin 16.26^{\circ}} = \frac{4}{\sin(180-53.13)} \text{ OR } \frac{3}{\sin 36.87^{\circ}}$ $v = 1.40 \text{ m s}^{-1}$	(B1) (M1A1) (A1) (M1) (A1)	 B1 For seeing 180 – 53.1 (= 126.9). M1 Using sine rule with 3, 4 and 126.9°. A1 Correct equation. A1 For finding 16.26. Accept 16.3 or 16.2 or 16.26 m1 Second application of sine rule with <i>v</i> and 3 or 4 with at least one correct angle. A1 Correct velocity. Accept 1.4 or 1.39. Note: the result below can be proved. <i>v</i> = 4sinα - 3cosα SC4 seeing 4sinα - 3cosα with incorrect answer. SC6 seeing 4sinα - 3cosα with answer as 1.4 or 1.39.
	Total	8	

Q	Answer	Marks	Comments
10	Dimension of g is LT^{-2} Dimension of s is L Dimension of h is L Dimension of m_1 and m_2 is M	B1	B1 for dimensions of the five quantities
	Dimension of $\frac{g}{s}[s(m_1 + m_2) + \frac{hm_1^2}{m_1 + m_2}]$ is $\frac{LT^{-2}}{L}[LM + \frac{LM^2}{M}] \cong MLT^{-2} + MLT^{-2}$	S M1	Correct substitution of dimension
	\cong MLT ⁻²	A1	
	which is a force	B1	
	Total	4	

Q	Answer		Marks	Comments
11(a)	$m(4u) + 3m(2u) = mv_A + 3mv_B$		M1 A1	M1 for four correct momentum terms with any signs.
	$\frac{v_B - v_A}{2} = a$		M1 A1	A1 for all correct
	$4u - 2u^{-c}$ $\left(v_A + 3v_B = 10u\right)$			M1 for correct terms for any signs, A1 for all correct.
	$\begin{vmatrix} v_B - v_A = 2ue \\ 4v_B = 2ue + 10u \end{vmatrix}$			
	$v_B = \frac{u}{2}(e+5)$		A1	OE, simplified
	$\left(v_A = \frac{u}{2}(e+5) - 2ue\right)$ $v_A = \frac{u}{2}(-3e+5)$		A1	OE, simplified
11(b)	$e \le 1 \implies v_B \le \frac{u}{2}(1+5)$		M1	Use of $e \le 1$ (OE) needed
	$\Rightarrow v_B \leq 3u$		A1	FT their v_B
		Total	8	

GET HELP AND SUPPORT

Visit our website for information, guidance, support and resources at oxfordaqaexams.org.uk

You can contact the English subject team directly at:

E: english@oxfordaqaexams.org.uk

OXFORD INTERNATIONAL AQA EXAMINATIONS LINACRE HOUSE, JORDAN HILL, OXFORD, OX2 8TA UNITED KINGDOM enquiries@oxfordaqaexams.org.uk oxfordaqaexams.org.uk