OXFORD

INTERNATIONAL AQA EXAMINATIONS

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number \square
Surname

Forename(s)
Candidate signature

INTERNATIONAL AS
 FURTHER MATHEMATICS

(FM02) Further Pure, Statistics and Mechanics Unit 1

Specimen 2018

Morning
Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- Unless otherwise stated, use $g=9.8 \mathrm{~ms}^{-2}$

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions in the spaces provided.

1 A curve passes through the point $(9,6)$ and satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2+\sqrt{x}}
$$

Use a step-by-step method with a step length of 0.25 to estimate the value of y at $x=9.5$ Give your answer to four decimal places.
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

2 The diagram below shows a rectangle R_{1} which has vertices $(0,0),(3,0),(3,2)$ and $(0,2)$.

2 (a) On the diagram, draw
2 (a) (i) the image R_{2} of R_{1} under a rotation through 90° clockwise about the origin

2 (a) (ii) the image R_{3} of R_{2} under the transformation which has matrix

$$
\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

2 (b) Find the matrix of:
2 (b) (i) the rotation which maps R_{1} onto R_{2}

2 (b) (ii) the combined transformation which maps R_{1} onto R_{3}

3 The variables x and Y, where $Y=\log _{10} y$, are related by the equation

$$
Y=m x+c
$$

where m and c are constants.
3 (a) Given that $y=a b^{x}$, express a in terms of c, and b in terms of m.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 (b) It is given that $y=12$ when $x=1$ and that $y=27$ when $x=5$ On the diagram opposite, draw a linear graph relating x and Y.

3 (c) Use your graph to estimate, to two significant figures:
3 (c)(i) the value of y when $x=3$;

Answer

3 (c) (ii) the value of a.

4 The plane transformation T is defined by

$$
\mathrm{T}:\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
4 & 3 \\
-3 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

4 (a) A shape has an area of 3 square units.
Find the area of the shape after being transformed by T .
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

4 (b) (i) Find the equations of all the invariant lines of T .

4 (b) (ii) State the equation of the line of invariant points of T.

Answer

5 The equation $24 x^{3}+36 x^{2}+18 x-5=0 \quad$ has one real root, α
5 (a) Show that α lies in the interval $0.1<x<0.2$
\qquad \longrightarrow \longrightarrow L (1)

5 (b) Starting from the interval $0.1<x<0.2$, use interval bisection twice to obtain an interval of width 0.025 within which α must lie.

5 (c) Taking $x_{1}=0.2$ as a first approximation to α, use the Newton-Raphson method to find a second approximation, x_{2}, to α.
Give your answer to four decimal places.

Answer
$6 \quad$ A hotel has three types of room: double, twin and suite. The percentage of rooms in the hotel of each type is 40,45 and 15 respectively.

Each room in the hotel may be occupied by $0,1,2$ or 3 or more people.
The proportional occupancy of each type of room is shown in the table.

		Occupancy			
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	3 or more
Room	Double	0.15	0.35	0.45	0.05
	Twin	0.05	0.55	0.30	0.10
	Suite	0.10	0.20	0.55	0.15

For example, the probability that, on a particular night, a double room has exactly 2 occupants is 0.45

On a particular night, a room is selected at random. Find the probability this room is
6 (a) unoccupied
\qquad $\underline{4}$

Answer

6 (b) a double room, given that it is unoccupied
\qquad
\qquad
\qquad
\qquad

Answer

6 (c) a suite, given that it is occupied.

Answer

$7 \quad$ A random variable X has the probability function

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cl}
\frac{1}{3 n} & x=1,2,3, \ldots, 3 n \\
0 & \text { otherwise }
\end{array}\right.
$$

where n is a positive integer.
7 (a) Determine, in terms of n, an expression for $\mathrm{E}(X)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

7 (b) Given that $\operatorname{Var}(X)=\frac{9 n^{2}-1}{12}$ and $n=9$, calculate the exact value of

$$
\mathrm{P}(X<(\mathrm{E}(X)+\sqrt{\operatorname{Var}(X)}))
$$

\qquad (
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
$8 \quad$ The random variable U has a binominal distribution with parameters n and p.
8 (a) Derive the probability generating function, $G_{u}(t)$, of U.
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad

Answer

8 (b) The random variable V is independent of U and has the distribution $\mathrm{B}(2 n, p)$
You are given that $W=U+V$
8 (b) (i) Deduce an expression for $\mathrm{G}_{w}(t)$;

8 (b) (ii) Hence specify the distribution of W.

Answer
$9 \quad$ A river has straight parallel banks. The water in the river is flowing at a constant velocity of $3 \mathrm{~m} \mathrm{~s}^{-1}$ parallel to the banks. A boat crosses the river, from the point A to the point B, so that its path is at an angle α to the bank. The velocity of the boat relative to the water is $4 \mathrm{~m} \mathrm{~s}^{-1}$ perpendicular to the bank. The diagram shows these velocities and the path of the boat.

9 (a) Show that $\alpha=53.1^{\circ}$, correct to three significant figures.
\qquad
\qquad
\qquad
\qquad

9 (b) The boat returns along the same straight path from B to A. Given that the speed of the boat relative to the water is still $4 \mathrm{~m} \mathrm{~s}^{-1}$, find the magnitude of the resultant velocity of the boat on the return journey.
\qquad
\qquad \longrightarrow
\qquad (-4)
\qquad
\qquad
\qquad \longrightarrow \longrightarrow

Answer
$\mathrm{m} \mathrm{s}^{-1}$

10 A pile driver of mass M falls from a height h onto a pile of mass m, driving the pile a distance s into the ground. The pile driver remains in contact with the pile after the impact. A resistance force R opposes the motion of the pile into the ground.

Elizabeth finds an expression for R as

$$
R=\frac{g}{s}\left[s(M+m)+\frac{h M^{2}}{M+m}\right]
$$

where g is the acceleration due to gravity.
Determine whether the expression is dimensionally consistent.
\qquad

11 A smooth sphere A, of mass m, is moving with speed $4 u$ in a straight line on a smooth horizontal table. A smooth sphere B, of mass $3 m$, has the same radius as A and is moving on the table with speed $2 u$ in the same direction as A.

The sphere A collides directly with sphere B.
The coefficient of restitution between A and B is e.
11 (a) Find, in terms of u and e, the speeds of A and B immediately after the collision.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad —_
\qquad
\qquad
\qquad
\qquad
\qquad

Speed of $A=$

Speed of $B=$

11 (b) Show that the speed of B after the collision cannot be greater than $3 u$.

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

