OXFORD	
INTERNATIONAL AQA EXAMINATION	5
Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

INTERNATIONAL AS

FURTHER MATHEMATICS

(FM02) Further Pure, Statistics and Mechanics Unit 1

|--|

Morning

Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- Unless otherwise stated, use $g = 9.8 \text{ ms}^{-2}$

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

	Answer all questions in the spaces provided.
A curve p	passes through the point (9, 6) and satisfies the differential equation
	$\frac{\mathrm{d}y}{\mathrm{d}y} = -1$
	$dx = 2 + \sqrt{x}$
Use a ste	ep-by-step method with a step length of 0.25 to estimate the value of y at
Give you	r answer to four decimal places. [5
	Answer

$\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$	
	[3

2 (b)	Find the matrix of:	
2 (b) (i)	the rotation which maps R_1 onto R_2	
		[1 mark]
	Answer	_
2 (b) (ii)	the combined transformation which maps R_{i} onto R_{2}	
2 (6) (11)	the combined transformation which maps N_1 onto N_3	[3 marks]
	Answer	
		_

3	The variables x and Y, where $Y = \log_{10} y$, are related by the equation	
	Y = mx + c	
	where m and c are constants.	
3 (a)	Given that $y = ab^x$, express <i>a</i> in terms of <i>c</i> , and <i>b</i> in terms of <i>m</i> .	[3 marks]
3 (b)	It is given that $y = 12$ when $x = 1$ and that $y = 27$ when $x = 5$	
	On the diagram opposite, draw a linear graph relating x and Y .	[2 morke]
		[3 marks]

4 4 (a)	The plane transformation T is defined by $T : \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ A shape has an area of 3 square units. Find the area of the shape after being transformed by T.	[2 marks]
	Answer	
4 (b) (i)	Find the equations of all the invariant lines of T.	[5 marks]

4 (b) (ii) State the equation of the line of invariant points of T.	[1 mark]
Answer	_

5 5 (a)	The equation $24x^3 + 36x^2 + 18x - 5 = 0$ has one real root, α Show that α lies in the interval $0.1 < x < 0.2$	[2 marks]
5 (b)	Starting from the interval $0.1 < x < 0.2$, use interval bisection twice to obtain an of width 0.025 within which α must lie.	n interval [3 marks]
	Answer	_

5 (c)	Taking $x_1 = 0.2$ as a first approximation to α , use the Newton-Raphson method to find a second approximation, x_2 , to α .				
	Give your answer to four decimal places.	[4 marks]			
	Answer	_			

6	A hotel has thr	ree types of roo	om: double, tw 0 45 and 15 r	win and suite.	The perce	ntage of rooms	3
	Each room in the hotel may be occupied by 0, 1, 2 or 3 or more people.						
	The proportional occupancy of each type of room is shown in the table.						
]		
	Occupancy 0 1 2 3 or more					-	
		Double	0.15	0.35	0.45	0.05	-
	Room	Twin	0.05	0.55	0.30	0.10	-
		Suite	0.10	0.20	0.55	0.15	-
6 (a)	On a particular unoccupied	r night, a room	is selected a	t random. Fin	d the proba	bility this room	is marks]
6 (b)	Answera double room, given that it is unoccupied [2 mai					marks]	
		Ans	wer				

	13	
6 (c)	a suite, given that it is occupied.	[3 marks]
	Answer	

7	A random variable X has the probability function
	$P(X = x) = \begin{cases} \frac{1}{3n} & x = 1, 2, 3,, 3n \\ 0 & \text{otherwise} \end{cases}$
	where <i>n</i> is a positive integer.
7 (a)	Determine, in terms of <i>n</i> , an expression for E(<i>X</i>). [3 marks]
	Answer

8 8 (a)	The random variable U has a binominal distribution with parameters n and p . Derive the probability generating function, $G_u(t)$, of U .	[3 marks]
	Answer	
8 (b)	The random variable <i>V</i> is independent of <i>U</i> and has the distribution B(2 <i>n</i> , <i>p</i>) You are given that $W = U + V$	
8 (b) (i)	Deduce an expression for $G_W(t)$;	[3 marks]
	Answer	

8 (b) (ii)	Hence specify the distribution of W .	[1 mark]
	Answer	

9 (b)	The boat returns along the same straight path from <i>B</i> to <i>A</i> . Given that the speed of the boat relative to the water is still 4 m s ⁻¹ , find the magnitude of the resultant velocity of the boat on the return journey.		
	or the boat on the retain journey.	[6 marks]	
		4	
	Answer	$m s^{-1}$	

10 A pile driver of mass M falls from a height h onto a pile of mass m, driving the pile a distance s into the ground. The pile driver remains in contact with the pile after the impact. A resistance force R opposes the motion of the pile into the ground.

Elizabeth finds an expression for R as

$$R = \frac{g}{s} \left[s(M+m) + \frac{hM^2}{M+m} \right]$$

where g is the acceleration due to gravity.

Determine whether the expression is dimensionally consistent.

[4 marks]

	horizontal table. A smooth sphere <i>B</i> , of mass $3m$, has the same radius as <i>A</i> and is moving on the table with speed $2u$ in the same direction as <i>A</i> .
	$\xrightarrow{4u}$ $\xrightarrow{2u}$
	m 3m
	A B
	The sphere A collides directly with sphere B.
	The coefficient of restitution between <i>A</i> and <i>B</i> is <i>e</i> .
11 (a)	Find, in terms of <i>u</i> and <i>e</i> , the speeds of <i>A</i> and <i>B</i> immediately after the collision. [6 marks
	Speed of $A =$
	Speed of <i>B</i> =

11 (b)	Show that the speed of B after the collision cannot be greater than $3u$.	[2 marks]
	END OF QUESTIONS	

