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Specimen 2018 Morning Time allowed: 2 hours 30 minutes 

Materials 
• For this paper you must have the booklet of formulae and statistical tables. 
• You may use a graphics calculator.  

 
Instructions 
• Use black ink or black ball-point pen. Pencil should be used for drawing. 
• Fill in the boxes at the top of this page. 
• Answer all questions. 
• You must answer each question in the space provided for that question.  If you 

require extra space, use a supplementary answer book; do not use the space 
provided for a different question. 

• Do not write outside the box or around each page. 
• Show all necessary working; otherwise marks for method may be lost. 
• Do all rough work in this book.  Cross through any work that you do not want to 

be marked. 
 
Information 
• The marks for questions are shown in brackets. 
• The maximum mark for this paper is 120. 

Advice 
• Unless stated otherwise, you may quote formulae, without proof, from the 

booklet. 
• You do not necessarily need to use all the space provided. 

Please write clearly in block capitals. 
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Answer all questions in the spaces provided. 

1  The diagram shows a sketch of a curve C, the pole O and the initial line. 

  The polar equation of C is 

   r = 2 θtan1+ , 
4
π

−  ⩽ θ ⩽ 
4
π  

  Show that the area of the shaded region, bounded by the curve C and the initial line, 

   is  
2
π  − In 2 

[4 marks] 

 

 

 

 

 

 

 

 

 

 
 

O Initial line 
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Turn over for the next question 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

DO  NOT  WRITE  ON  THIS  PAGE 
ANSWER  IN  THE  SPACES  PROVIDED 
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2  (a) Use the definitions of cosh θ  and sinh θ  in terms of eθ  to show that 

cosh x cosh y ‒ sinh x sinh y = cosh (x ‒ y) 
[4 marks] 
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2  (b) It is given that x satisfies the equation 

cosh(x ‒ ln 2) = sinh x 

2 (b) (i) Show that  tanh x = 
7
5  

[4 marks] 

 

 

 

 

 

 

 

 

2 (b) (ii) Express x in the form 
2
1 ln a  

[2 marks] 
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3 The roots of the cubic equation 
 

    z3 − 2z2 + pz + 10 = 0 
 

   are  α, β and γ. 

   It is given that  α3 + β 3 + γ 3 = − 4 

3  (a) Write down the value of  α + β + γ 
[1 mark] 

 

 

Answer   

3  (b) (i) Explain why  α3 − 2α 2 + pα + 10 = 0 
[1 mark] 

 

 

3  (b) (ii) Hence show that  α 2 + β  2 + γ   2 = p + 13 
[4 marks] 
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3  (b) (iii) Deduce that  p = −3 
[2 marks] 

 

 

 

 

 

3  (c) (i) Find the real root α of the cubic equation  z 3 − 2z 2 − 3z + 10 = 0 
[2 marks] 

 

 

 

 

 

α =   

3  (c) (ii) Find the values of  β  and γ 
[3 marks] 
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4 The matrix M = 
















1
3
24

2
3
1

k
k , where k is a constant. 

4  (a) Show that M is non-singular for all values of k. 
[3 marks] 

 

 

 

 

 

4  (b) Obtain M−1 in terms of k. 
[5 marks] 
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4  (c) Use M−1 to solve the equations 

  x + 4y + 2z = 25 
3x + ky + 3z =   3 
2x + ky +   z =   2 

 giving your solution in terms of k. 
[4 marks] 

 

 

 

 

 

 

 

 

 

 

 

 

 

x =   

y =   

z =   
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5  (a) Show that  tan x  is an integrating factor for the differential equation 

   
x

y

d
d

 + 
x
x

tan
sec2

y = tan x 

[2 marks] 

 

 

 

 

 

 

5  (b) Hence solve this differential equation, given that  y = 3  when  x = 
4
π  

[6 marks] 

 

 

 

 

 

 

 

 

 

 

 

 

Answer      
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6   Find the eigenvalues and corresponding eigenvectors of the matrix M = 







4
5

5
4  

[6 marks] 
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7  (a) Find the values of the constants  a, b and c  for which  a + bx + cxe−3x  is a particular 
  integral of the differential equation 

   
2

2

x

y

d

d
 + 2

x

y

d

d
 − 3y = 3x −8e−3x 

[5 marks] 

 

 

 

 

 

 

 

 

 

 

 

 

a =    

b =   

c =    
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7  (b) Hence find the general solution of this differential equation. 
[3 marks] 

 

 

 

 

 

 

 

 

Answer      

7  (c) Hence express y in terms of x, given that  y = 1 when  x = 0 and that 
x

y

d

d
 → − 1 as x → ∞ 

[4 marks] 

 

 

 

 

 

 

 

 

Answer      
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8  It is given that  y = ( )2
1

sin4 x+  

8  (a) Express  y 

x

y

d

d
 in terms of  cos x  

[2 marks] 

 

 

 

 

 

Answer      

8  (b) Find the value of  
3

3

x

y

d

d
  when x = 0 

[5 marks] 

 

 

 

 

 

 

 

 

 

 

Answer      
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8  (c) Hence, by using Maclaurin’s theorem, find the first four terms in the expansion, 

   in ascending powers of x, of ( )2
1

sin4 x+  
[2 marks] 

 

 

 

 

 

Answer      

9  (a) Express  7 + 4x − 2x2  in the form  a − b(x − c)2, where a, b and c are integers. 
[2 marks] 

 

 

 

 

Answer      
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9  (b) By means of a suitable substitution, or otherwise , find the exact value of 

    
2

2

5

1 247 xx

x

−+∫ d  

[6 marks] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer      
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10  The sequence   u1,  u2,  u3, …   is defined by 

   u1 = 
4
3          un + 1 = 

nu−4
3  

  Prove by induction that, for all  n ⩾ 1, 

    un = 
13

33
1

1

−

−

+

+

n

n
 

[6 marks] 
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11  (a) Given that 

   x = In(sec t + tan t) − sin t 

  show that 

   
t

x

d
d  = sin t tan t 

[4 marks] 
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11  (b) A curve is given parametrically by the equations 

    x = In(sec t + tan t) − sin t,        y = cos t 

 The length of the arc of the curve between the points where  t = 0  and  t =
3
π  is 

 denoted by s. 

 Show that  s = ln p, where p is an integer. 
[6 marks] 
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12  A line and plane have equations 

p
x 3−  = 

3
qy −  =  

1
1

−
−z  

  and r  .  
















2
1
1

 = 10 

  respectively, where p and q are constants. 

12  (a) Show that the line is not perpendicular to the plane. 
[1 mark] 

 

 

12  (b) In the case where the line lies in the plane, find the values of p and q. 
[4 marks] 

 

 

 

 

 

 

 

 

p =    

q =   
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12  (c) In the case where the angle,  θ , between the line and the plane satisfies  

  sin θ = 
6
1 , and the line intersects the plane at z = 2: 

12  (c) (i) find the value of p 
[5 marks] 

 

 

 

 

 

 

 

 

 

 

p =    

12 (c) (ii) find the value of q 
[2 marks] 

 

 

 

 

 

 

q =    
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13  (a) (i) Express each of the numbers 1 + i3   and  1 − i   in the form r eiθ, where r > 0 
[3 marks] 

 

 

 

 

 

 

1 + i3  =    

1 − i =   

13  (a) (ii) Hence express 
(1 + i3 )8 (1 − i)5 

  in the form  r eiθ, where r > 0 
[3 marks] 

 

 

 

 

 

 

Answer      
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13  (b) Solve the equation 

    z3 = (1 + i3 )8 (1 − i)5 

  giving your answers in the form  a θie2 , where a is a positive integer and  − π < θ ⩽ π 

[4 marks] 

 

 

 

 

 

 

 

 

Answer   

 

 

END  OF  QUESTIONS 
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