INTERNATIONA AQA EXAMINATIO	AL ONS			
Please write clea	rly in block capitals.			
Centre number		Candidate number		
Surname				
Forename(s)				
Candidate signatur	re			

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(FM03) Unit FP2 - Pure Maths

Specimen 2018

OXFORD

Morning

Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Use the definitions of $\cosh \theta$ and $\sinh \theta$ in terms of e^{θ} to show that 2 (a) $\cosh x \cosh y - \sinh x \sinh y = \cosh (x - y)$ [4 marks]

2 (b)	It is given that <i>x</i> satisfies the equation
	$\cosh(x - \ln 2) = \sinh x$
2 (b) (i)	Show that $\tanh x = \frac{5}{7}$ [4 marks]
2 (b) (ii)	Express x in the form $\frac{1}{2} \ln a$ [2 marks]

3	The roots of the cubic equation	
	$z^3 - 2z^2 + pz + 10 = 0$	
3 (a)	are α , β and γ . It is given that $\alpha^3 + \beta^3 + \gamma^3 = -4$ Write down the value of $\alpha + \beta + \gamma$ [1 mage: the second	ark]
	Answer	
3 (b) (i)	Explain why $\alpha^3 - 2\alpha^2 + p\alpha + 10 = 0$ [1 m	ark]
3 (b) (ii)	Hence show that $\alpha^2 + \beta^2 + \gamma^2 = p + 13$ [4 ma	rks]

3 (b) (iii)	Deduce that $p = -3$	[2 marks]
3 (c) (i)	Find the real root α of the cubic equation $z^3 - 2z^2 - 3z + 10 = 0$	[2 marks]
	α =	
3 (c) (ii)	Find the values of β and γ	[3 marks]

4	The matrix $\mathbf{M} = \begin{bmatrix} 1 & 4 & 2 \\ 3 & k & 3 \\ 2 & k & 1 \end{bmatrix}$, where k is a constant.	
4 (a)	Show that M is non-singular for all values of <i>k</i> .	[3 marks]
4 (b)	Obtain M ⁻¹ in terms of <i>k</i> .	[5 marks]

4 (c)	Use \mathbf{M}^{-1} to solve the equation	ons	
		x + 4y + 2z = 25 3x + ky + 3z = 3 2x + ky + z = 2	
	giving your solution in terms	of <i>k</i> .	[4 marks]
		<i>x</i> =	
		<i>y</i> =	
		z =	

5 (a)	Show that $\tan x$ is an integrating factor for the differential equation	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{sec}^2 x}{\mathrm{d}x} y = \tan x$	
	dx tan x	[2 marks]
5 (b)	Hence solve this differential equation, given that $y = 3$ when $x = \frac{\pi}{4}$	
	4	[6 marks]
	Answer	

Find the eigenvalues	and corresponding	eigenvectors of the	e matrix $\mathbf{M} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$	5 4] [6 r

7 (b)	Hence find the general solution of this differential equation.	[3 marks]
	Answer	_
7 (c)	Hence express y in terms of x given that $y = 1$ when $x = 0$ and that $\frac{dy}{dx} \rightarrow -1$	$35 r \rightarrow \infty$
. (0)	dx	[4 marks]
	Answer	_

8 (c)	Hence, by using Maclaurin's theorem, find the first four terms in the expansion, in ascending powers of <i>x</i> , of $(4 + \sin x)^{\frac{1}{2}}$	[2 marks]
	Answer	_
9 (a)	Express $7 + 4x - 2x^2$ in the form $a - b(x - c)^2$, where <i>a</i> , <i>b</i> and <i>c</i> are integers.	[2 marks]
	Answer	_

The sequence
$$u_1, u_2, u_3, \dots$$
 is defined by

$$u_1 = \frac{3}{4} \qquad u_{n+1} = \frac{3}{4 - u_n}$$
Prove by induction that, for all $n \ge 1$,

$$u_n = \frac{3^{n+1} - 3}{3^{n+1} - 1}$$

[6 marks]

11 (a) Given that

$$x = \ln(\sec t + \tan t) - \sin t$$
show that
$$\frac{dx}{dt} = \sin t \tan t$$
[4 marks]

11 (b) A curve is given parametrically by the equations $x = \ln(\sec t + \tan t) - \sin t$, $y = \cos t$ The length of the arc of the curve between the points where t = 0 and $t = \frac{\pi}{3}$ is denoted by s. Show that $s = \ln p$, where *p* is an integer. [6 marks]

12	A line and plane have equations
	$\frac{x-3}{n} = \frac{y-q}{3} = \frac{z-1}{-1}$
	μ 3 -1 Γ1]
	and $\mathbf{r} \cdot \begin{vmatrix} 1 \\ 1 \\ 2 \end{vmatrix} = 10$
10 (1)	respectively, where p and q are constants.
12 (a)	Show that the line is not perpendicular to the plane. [1 mark]
12 (b)	In the case where the line lies in the plane, find the values of p and q
12 (0)	[4 marks]
	<i>p</i> =
	$q = _$

12 (c)	In the case where the angle, θ , between the line and the plane satisfies	
12 (c) (i)	find the value of p	[5 marks]
	<i>p</i> =	
12 (c) (ii)	find the value of q	10
	q =	

21

13	(a) (i)	Express each of the numbers $1 + \sqrt{3}i$ and $1 - i$ in the form $re^{i\theta}$, where $r > 0$	[3 marks]
		$1 + \sqrt{3i} =$	_
		1 – i =	-
13	(a) (ii)	Hence express $(1 + \sqrt{3}i)^8 (1 - i)^5$	
		in the form $r e^{i\theta}$, where $r > 0$	[3 marks]
		Answer	_

13 (b)	Solve the equation
	$z^3 = (1 + \sqrt{3}i)^8 (1 - i)^5$
	giving your answers in the form $a\sqrt{2}e^{i\theta}$, where <i>a</i> is a positive integer and $-\pi < \theta \le \pi$
	[4 marks]
	Answer
	END OF QUESTIONS

