OXFORD

INTERNATIONAL
AQA EXAMINATIONS

Please write clearly in block capitals.

Centre number \square Candidate number \square
Surname

Forename(s)
Candidate signature \qquad

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(FM03) Unit FP2 - Pure Maths

Specimen 2018

Morning

Materials

- For this paper you must have the booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use a supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box or around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Answer all questions in the spaces provided.

1 The diagram shows a sketch of a curve C, the pole O and the initial line.

The polar equation of C is

$$
r=2 \sqrt{1+\tan \theta}, \quad-\frac{\pi}{4} \leqslant \theta \leqslant \frac{\pi}{4}
$$

Show that the area of the shaded region, bounded by the curve C and the initial line,
is $\frac{\pi}{2}-\ln 2$
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

2 (a) Use the definitions of $\cosh \theta$ and $\sinh \theta$ in terms of e^{θ} to show that

$$
\cosh x \cosh y-\sinh x \sinh y=\cosh (x-y)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

2 (b) It is given that x satisfies the equation

$$
\cosh (x-\ln 2)=\sinh x
$$

2 (b) (i) Show that $\tanh x=\frac{5}{7}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 (b) (ii) Express x in the form $\frac{1}{2} \ln a$

3 The roots of the cubic equation

$$
z^{3}-2 z^{2}+p z+10=0
$$

are α, β and γ.
It is given that $\alpha^{3}+\beta^{3}+\gamma^{3}=-4$
3 (a) Write down the value of $\alpha+\beta+\gamma$

Answer

3 (b) (i) Explain why $\alpha^{3}-2 \alpha^{2}+p \alpha+10=0$
\qquad
\qquad

3 (b) (ii) Hence show that $\alpha^{2}+\beta^{2}+\gamma^{2}=p+13$

3 (b) (iii) Deduce that $p=-3$

3 (c) (i) Find the real root α of the cubic equation $z^{3}-2 z^{2}-3 z+10=0$

$$
\alpha=
$$

3 (c) (ii) Find the values of β and γ
$4 \quad$ The matrix $\mathbf{M}=\left[\begin{array}{lll}1 & 4 & 2 \\ 3 & k & 3 \\ 2 & k & 1\end{array}\right]$, where k is a constant.
4 (a) Show that \mathbf{M} is non-singular for all values of k.

4 (b) Obtain \mathbf{M}^{-1} in terms of k.

4 (c) Use \mathbf{M}^{-1} to solve the equations

$$
\begin{aligned}
x+4 y+2 z & =25 \\
3 x+k y+3 z & =3 \\
2 x+k y+z & =2
\end{aligned}
$$

giving your solution in terms of k.
\qquad \longrightarrow \longrightarrow
\qquad
$x=$ \qquad
$y=$ \qquad
$z=$

5 (a) Show that $\tan x$ is an integrating factor for the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{\sec ^{2} x}{\tan x} y=\tan x
$$

5 (b) Hence solve this differential equation, given that $y=3$ when $x=\frac{\pi}{4}$
$6 \quad$ Find the eigenvalues and corresponding eigenvectors of the matrix $\mathbf{M}=\left[\begin{array}{ll}4 & 5 \\ 5 & 4\end{array}\right]$
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 (a) Find the values of the constants a, b and c for which $a+b x+c x \mathrm{e}^{-3 x}$ is a particular integral of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=3 x-8 \mathrm{e}^{-3 x}
$$

$$
a=
$$

$$
b=
$$

$$
c=
$$

7 (b) Hence find the general solution of this differential equation.

Answer

7 (c) Hence express y in terms of x, given that $y=1$ when $x=0$ and that $\frac{\mathrm{d} y}{\mathrm{~d} x} \rightarrow-1$ as $x \rightarrow \infty$ [4 marks]

Answer
$8 \quad$ It is given that $y=(4+\sin x)^{\frac{1}{2}}$
8 (a) Express $y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ in terms of $\cos x$

Answer

8 (b) Find the value of $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ when $x=0$

8 (c) Hence, by using Maclaurin's theorem, find the first four terms in the expansion, in ascending powers of x, of $(4+\sin x)^{\frac{1}{2}}$
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

9 (a) Express $7+4 x-2 x^{2}$ in the form $a-b(x-c)^{2}$, where a, b and c are integers.
\qquad
\qquad
\qquad
\qquad

Answer

9 (b) By means of a suitable substitution, or otherwise, find the exact value of

$$
\int_{1}^{\frac{5}{2}} \frac{d x}{\sqrt{7+4 x-2 x^{2}}}
$$

The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=\frac{3}{4} \quad u_{n+1}=\frac{3}{4-u_{n}}
$$

Prove by induction that, for all $n \geqslant 1$,

$$
u_{n}=\frac{3^{n+1}-3}{3^{n+1}-1}
$$

\qquad
\qquad 1 1
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad $\underline{\text { L }}$

11 (a) Given that

$$
x=\ln (\sec t+\tan t)-\sin t
$$

show that

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin t \tan t
$$

11 (b) A curve is given parametrically by the equations

$$
x=\ln (\sec t+\tan t)-\sin t, \quad y=\cos t
$$

The length of the arc of the curve between the points where $t=0$ and $t=\frac{\pi}{3}$ is denoted by s.

Show that $s=\ln p$, where p is an integer.
\qquad

12 A line and plane have equations

$$
\frac{x-3}{p}=\frac{y-q}{3}=\frac{z-1}{-1}
$$

and
$\mathbf{r} \cdot\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=10$
respectively, where p and q are constants.
12 (a) Show that the line is not perpendicular to the plane.

12 (b) In the case where the line lies in the plane, find the values of p and q.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$p=$

$$
q=
$$

12 (c) In the case where the angle, θ, between the line and the plane satisfies $\sin \theta=\frac{1}{\sqrt{6}}$, and the line intersects the plane at $z=2$:
12 (c) (i) find the value of p

12 (c) (ii) find the value of q

13 (a) (i) Express each of the numbers $1+\sqrt{3 i}$ and $1-\mathrm{i}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$

$$
1+\sqrt{3} i=
$$

$$
1-i=
$$

13 (a) (ii) Hence express

$$
(1+\sqrt{3} i)^{8}(1-i)^{5}
$$

in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$
\qquad
\qquad \longrightarrow
\qquad \longrightarrow
\qquad

Answer

13 (b) Solve the equation

$$
z^{3}=(1+\sqrt{3} i)^{8}(1-i)^{5}
$$

giving your answers in the form $a \sqrt{2} \mathrm{e}^{\mathrm{i} \theta}$, where a is a positive integer and $-\pi<\theta \leqslant \pi$ [4 marks]
\qquad (
\qquad \longrightarrow
\qquad
\qquad
\qquad \longrightarrow

Answer

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE

 ANSWER IN THE SPACES PROVIDED

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2015 Oxford International AQA Examinations and its licensors. All rights reserved.

