OXFORD

INTERNATIONAL AQA EXAMINATIONS

Mark scheme

Further statistics Unit 2

Specimen

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Key to mark scheme abbreviations

M	Mark is for method
\mathbf{m}	Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or marks and is for accuracy
B Mark is independent of M or marks and is for method and accuracy
E Mark is for explanation
ft Follow through from previous incorrect result
CAO Correct answer only
AWFW Anything which falls within
AWRT Anything which rounds to
ACF Any correct form
AG Answer given
SC Special case
oe Or equivalent
A2, 12 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE \quad Deduct x marks for each error
NMS No method shown
PI Possibly implied
SCA Substantially correct approach
sf Significant figure(s)
dp Decimal place(s)

No method shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Answer	Marks	Total	Comments
2 (a) (b)	Sample mean $=380.8$ $\begin{aligned} & s=4.38 \quad \text { or } \quad s^{2}=19.2 \\ & t_{4}=2.132 \\ & \text { C.I. }=380.8 \pm 2.132 \times \underbrace{\prime 4.38^{\prime}} \text { or } \sqrt{ }\left(19.2^{\prime} / 5\right) \\ & =(377,385) \end{aligned}$	B1 B1 B1 M1 m1 A1 B1		CAO AWRT AWRT 2.13 Use of their $4.38 / \sqrt{ } 5$ or $\sqrt{(19.2} / 5)$ Rest of formula (using t_{4} or t_{5} (2.015)) AWRT CAO
		Total	7	

Q	Answer	Marks	Total	Comments
	$\begin{aligned} & \mathrm{H}_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{G}} \\ & \mathrm{H}_{1}: \mu_{\mathrm{B}} \neq \mu_{\mathrm{G}} \\ & \mathrm{SL} \quad \alpha=0.05(5 \%) \\ & \mathrm{CV} \quad \mathrm{z}=(\pm) \underline{1.96} \\ & \mathrm{z}=\frac{\|\bar{b}-\bar{g}\|}{\sqrt{\frac{\sigma_{B}^{2}}{n_{B}}+\frac{\sigma_{G}^{2}}{n_{G}}}}=\frac{\|21.35-21.90\|}{\sqrt{\frac{0.5625}{20}+\frac{0.9025}{15}}} \\ & =(\pm) \mathbf{1 . 8 5} \end{aligned}$ Evidence, at 5\% level, that $\mu_{\mathrm{B}}=\boldsymbol{\mu}_{\mathrm{G}}$ or No evidence, at 5\% level, that $\boldsymbol{\mu}_{\mathrm{B}} \neq \boldsymbol{\mu}_{\mathrm{G}}$	B1 B1 M1 M1 A1 A1ft	6	At least H_{1}; allow suffices of $1 \& 2$ or $X \& Y$, etc AWRT (1.9600) Numerator Denominator Dependent on at least M1 M0 AWRT (1.8510) Ignore sign $\quad(p$-value $=$ 0.0642) ft on CV \& z-value; consistent signs Definitive conclusion \Rightarrow AFO ft on 5% \& p-value; consistent areas
		Total	6	

Q	Answer	Marks	Total	Comments
$\begin{array}{r} 6 \\ \text { (a)(i) } \end{array}$	$\mathrm{E}(\mathrm{F})=128+112=240$	B1	1	CAO
(ii)	$\operatorname{Cov}(X, Y)=-0.4 \times \sqrt{50 \times 50}=\mathbf{- 2 0}$	M1		Used; or equivalent
(b)(i)	$\operatorname{Var}(F)=50+50+(2 \times-20)=60$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	$\mathrm{V}(X)+\mathrm{V}(Y)+2 \operatorname{Cov}(X, Y)$ used CAO; AG
	$\mathrm{E}(\mathrm{T})=240+75=315$	B1ft		ft on (a)(i)
	$\operatorname{Var}(T)=60+36=96$	B1	2	CAO
(ii)	$\mathrm{E}(M)=240-(3 \times 75)=15$	B1ft		ft on (a)(i)
	$\begin{aligned} \operatorname{Var}(M)=60 & +\left\{\left(-3^{2}\right) \times 36\right\} \\ & =60+324=\mathbf{3 8 4} \end{aligned}$	M1 A1	3	$\mathrm{V}(F)+3^{2} \mathrm{~V}(S)$ used
(c)	$\mathrm{P}(T>300)=\mathrm{P}\left(Z>\frac{300-315}{\sqrt{06}}\right)$	M1		Standardising 300 or 300.5
	$=\mathrm{P}(\mathrm{Z}>-1.53)=\mathrm{P}(\mathrm{Z}<1.53)$	m1		Area change
	$=0.936$ to 0.938	A1	3	AWFW
	Total		12	

Q	Answer	Marks	Total	Comments
$7(a)$ (i)	$\begin{aligned} & \mathrm{M}_{Z}(t)=\mathrm{E}\left(\mathrm{e}^{t z}\right)=\int \mathrm{e}^{t z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} \mathrm{~d} z \\ & \begin{aligned} &=\frac{1}{\sqrt{2 \pi}} \int \mathrm{e}^{-\frac{1}{2}\left(z^{2}-2 z\right)} \mathrm{d} z=\frac{1}{\sqrt{2 \pi}} \int \mathrm{e}^{-\frac{1}{2}(z-t)^{2}+\frac{1}{2} t^{2}} \mathrm{~d} z \\ &=\mathrm{e}^{\frac{1}{t^{2}}} \times \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2} u^{2}} \mathrm{~d} u \text { where } u=z-t \\ &=\mathrm{e}^{\frac{1}{t^{2}}} \times 1=\mathrm{e}^{\frac{1}{t^{2}}} \end{aligned} \end{aligned}$	M1 m1 m1 A1	4	Ignore limits Completing square Removing constant term and substitution Fully correct derivation
(ii)	$\begin{aligned} & \mathrm{M}_{X}(t)=\mathrm{M}_{\mu+\sigma z}(t)=e^{\mu t} \mathrm{M}_{Z}(\sigma t) \\ & =\mathrm{e}^{\mu t} \times \mathrm{e}^{\left.\frac{1}{2} \sigma t\right)^{2}}=\mathrm{e}^{\mu t \frac{1}{2} \sigma^{2} t^{2}} \end{aligned}$	M1 A1	2	Substitution and two terms Fully correct deduction
(iii)	$\begin{aligned} & \text { Mean }=\mathrm{M}_{X}^{\prime}(0)=\left[\left(\mu+\sigma^{2} t\right) \mathrm{e}^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\right]_{t=0}=\mu \\ & \left.\begin{array}{l} \mathrm{M}_{X}^{\prime \prime}(0)=\left[\left(\sigma^{2}\right) \mathrm{e}^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}+\left(\mu+\sigma^{2} t\right)^{2} \mathrm{e}^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}\right] \end{array}\right]_{t=0} \\ & =\sigma^{2}+\mu^{2} \\ & \text { Variance }=\mathrm{M}_{X}^{\prime \prime}(0)-(\text { mean })^{2} \\ & \qquad=\sigma^{2}+\mu^{2}-\mu^{2}=\sigma^{2} \end{aligned}$	M1 A1 M1 A1 B1	5	Attempt at first derivative Correct evaluation at $t=0$ Attempt at second derivative Correct evaluation at $t=0$ CAO
(b) (i)	$\mathrm{M}_{\bar{X}}(t)=M_{\sum x_{i}}\left(\frac{t}{n}\right)$ Using product of mgf's	B1 M1		Catering for $1 / n$

	$=\left(\mathrm{e}^{\mu \frac{t}{n}+\frac{1}{2} \sigma^{2}\left(\frac{t}{n}\right)^{2}}\right)^{n}$ $=e^{\mu t+\frac{\sigma^{2}}{2 n} t^{2}}$	m1 A1	4	Attempted application Fully correct deduction
(ii)	\bar{X} has normal distribution with mean μ and variance σ^{2} / n	Bdep1 Bdep1	2	Normal and μ; dependent on (b)(i) Dependent on (b)(i)
		Total	17	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Answer \& Mark \& Total \& Comment

\hline 8(a) \& $$
\begin{aligned}
& \mathrm{E}\left(\bar{X}_{1}\right)=\frac{n_{1 \mu}}{n_{1}}=\mu \text { and } \mathrm{E}\left(\bar{X}_{2}\right)=\frac{n_{2} \mu}{n_{2}}=\mu \\
& \mathrm{E}\left(k \bar{X}_{1}+(1-k) \bar{X}_{2}\right)=k \mathrm{E}\left(\bar{X}_{1}\right)+(1-k) \mathrm{E}\left(\bar{X}_{2}\right) \\
& \quad=k \mu+(1-k) \mu=\mu
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& 2 \& Stated or implied.

\hline (b) \& $$
\begin{align*}
& \operatorname{Var}\left(k \bar{X}_{1}+\right.\left.(1-k) \bar{X}_{2}\right) \\
&=k^{2} \operatorname{Var}\left(\bar{X}_{1}\right)+(1-k)^{2} \operatorname{Var}\left(\bar{X}_{2}\right) \\
& \operatorname{Var}\left(\bar{X}_{1}\right)= \frac{\sigma^{2}}{n_{1}} \text { and } \operatorname{Var}\left(\bar{X}_{2}\right)=\frac{\sigma^{2}}{n_{2}} \tag{OE}\\
& \Rightarrow V=k^{2} \frac{\sigma^{2}}{n_{1}}+(1-k)^{2} \frac{\sigma^{2}}{n_{2}} \quad \text { (AG) }
\end{align*}
$$ \& M1

A1 \& 2 \& Stated or implied.

\hline (c) \& \[
$$
\begin{aligned}
& \frac{\mathrm{d} V}{\mathrm{~d} k}=\sigma^{2}\left\{\frac{2 k}{n_{1}}-\frac{2(1-k)}{n_{2}}\right\} \\
& \frac{k}{n_{1}}-\frac{(1-k)}{n_{2}}=0 \Rightarrow k=\frac{n_{1}}{n_{1}+n_{2}}
\end{aligned}
$$

\] \& | M1A1 |
| :--- |
| A1 | \& 3 \& Using $n_{1}=n_{2}=n$ from the start $\Rightarrow \mathrm{MO}$.

\hline \& $$
k \bar{X}_{1}+(1-k) \bar{X}_{2}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}}{n_{1}+n_{2}} \quad \text { (OE) }
$$ \& E1 \& 2 \& F.t. on algebraic form. $\frac{1}{2}$ gets AO.

\hline (ii) \& This is the weighted average of means. \& M1A1 \& 1 \& Explanation in terms of proportionality, or 'pooled estimate' OK

\hline (iii) \& $$
\frac{\mathrm{d}^{2} V}{\mathrm{~d} k^{2}}=2 k \sigma^{2}\left\{\frac{1}{n_{1}}+\frac{1}{n_{2}}\right\}>0 \Rightarrow \text { minimum } V .
$$ \& \& 2 \&

\hline \& Total \& \& 12 \&

\hline
\end{tabular}

GET HELP AND SUPPORT

Visit our website for information, guidance, support and resources at oxfordaqaexams.org.uk You can contact the English subject team directly at:
E: english@oxfordaqaexams.org.uk

OXFORD INTERNATIONAL AQA EXAMINATIONS
LINACRE HOUSE, JORDAN HILL, OXFORD, OX2 8TA
UNITED KINGDOM
enquiries@oxfordaqaexams.org.uk
oxfordaqaexams.org.uk

