OXFORD

INTERNATIONAL AQA EXAMINATIONS

Mark scheme

Further mechanics Unit 2
Specimen

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Key to mark scheme abbreviations

M
m
A
B Mark is independent of M or m marks and is for method and accuracy
E Mark is for explanation
ft Follow through from previous incorrect result
CAO Correct and answer only
AWFW Anything which falls within
AWRT Anything which rounds to
ACF Any correct form
AG Answer given
SC Special case
oe Or equivalent
A2, 12 or 1 (or 0) accuracy marks
$-\boldsymbol{x}$ EE \quad Deduct x marks for each error
NMS No method shown
PI Possibly implied
SCA Substantially correct approach
$\mathbf{s f} \quad$ Significant figure(s)
dp Decimal place(s)

No method shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Answer	Marks	Total	Comments
1(a)	$\begin{aligned} \text { EPE } & =\frac{\lambda x^{2}}{2 l} \\ & =\frac{180 \times 0.8^{2}}{2 \times 1.2} \\ & =48 \mathrm{~J} \end{aligned}$	M1 A1	2	
(b)	Using initial EPE $=K E$ when string becomes slack: $\begin{aligned} 48 & =\frac{1}{2} \times 5 \times v^{2} \\ v & =\sqrt{\frac{96}{5}} \\ & =4.38 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1ft A1ft	3	$\mathrm{ft} \sqrt{\frac{\rho^{\prime}}{2.5}}$
(c)	Normal reaction is $5 g$ or 49 Frictional force is $5 g \times \mu$ Work done by frictional force is $5 \mu g \times 2$ $=10 \mu g$	$\begin{gathered} \text { M1 } \\ \text { m1A1 } \\ \text { m1 } \\ \text { A1 } \end{gathered}$		
	Stops at wall $\Rightarrow 10 \mu \mathrm{~g}=48$ $\mu=0.490$	m1 A1	7	m1 $10 \mu g=' a$ ' accept $\frac{24}{49}$ OE
	Total		12	

Q	Answer	Marks	Total	Comments
$2(a)$ (b)	Using conservation of energy: $\begin{aligned} & \frac{1}{2} m(5 u)^{2}=\frac{1}{2} m(2 u)^{2}+2 a m g \\ & \frac{1}{2} \times 21 \times u^{2}=2 a g \\ & u=\sqrt{\frac{4 a g}{21}} \end{aligned}$ Using conservation of energy with speed at point S to be V : $\begin{aligned} & \frac{1}{2} m(5 u)^{2}=\frac{1}{2} m(V)^{2}+a m g(1+\cos 60) \\ & \frac{1}{2} m V^{2}=\frac{1}{2} m(5 u)^{2}-1 \frac{1}{2} a m g \\ & V^{2}=25 \times\left(\frac{4 a g}{21}\right)-3 a g \\ & V^{2}=\frac{37 a g}{21} \end{aligned}$ Resolving radially at point S : $\begin{aligned} R & =-m g \cos 60+\frac{m(V)^{2}}{a} \\ & =-\frac{1}{2} m g+\frac{37 m g}{21} \\ & =\frac{53}{42} m g \text { or } 1.26 m g \end{aligned}$	M1A1 M1 A1 M1 A1 M1A1 A1	4	M1 for 3 [or 4] terms: 2 KE and 1[or 2] PE M1A1 for finding h Or $\frac{1}{2} m(V)^{2}=a m g\left(1-\cos 60^{\circ}\right)+\frac{1}{2} m\left(2 \sqrt{\frac{4 a g}{21}}\right)^{2}$
	Total		9	

Q	Answer	Marks	Total	Comments
4 (a)	Perpendicular to the plane: $y=-\frac{1}{2} g t^{2} \cos 20+u t \sin 30$	M1		
	$0=-4.9 t^{2} \cos 20+u t \sin 30$	M1		
	$t=0.108589568 u \text { or } \frac{2 u \sin 30}{g \cos 20}$	A1		
	Parallel to the plane: $x=-\frac{1}{2} g t^{2} \sin 20+u t \cos 30$	M1		
	$\begin{aligned} & 200=-4.9(0.108589568 u)^{2} \sin 20+ \\ & u(0.108589568 u) \cos 30 \end{aligned}$	m1		
	$u^{2}=2693$	A1ft		
	$u=51.9 \quad$ or 51.894	A1ft	7	Do not accept $\sqrt{2693}$
(b)	$\dot{y}=-g t \cos 20+u \sin 30=0$	M1		
	$t=2.817899 \text { or } 2.817580214 \text { or } \frac{51.9 \sin 30}{g \cos 20}$	A1ft		Accept 3 significant fig.
	The greatest \perp distance $=$ $\begin{aligned} & -\frac{1}{2} 9.8(2.817899)^{2} \cos 20+51.9(2.817899) \sin 30 \text { or } \\ & -\frac{1}{2} 9.8\left(\frac{51.894 \sin 30}{9.8 \cos 20}\right)^{2} \cos 20+51.9\left(\frac{51.894 \sin 30}{9.8 \cos 20}\right) \sin 30 \end{aligned}$	m1		
	$\begin{aligned} & =36.5622 \mathrm{~m} \text { or } 36.5538 \\ & =36.6 \quad 3 \mathrm{sf} \end{aligned}$	A1ft	4	
	Total		11	

GET HELP AND SUPPORT

Visit our website for information, guidance, support and resources at oxfordaqaexams.org.uk You can contact the English subject team directly at:

E: english@oxfordaqaexams.org.uk

OXFORD

INTERNATIONAL
AQA EXAMINATIONS

OXFORD INTERNATIONAL AQA EXAMINATIONS
LINACRE HOUSE, JORDAN HILL, OXFORD, OX2 8TA
UNITED KINGDOM
enquiries@oxfordaqaexams.org.uk oxfordaqaexams.org.uk

