INTERNATIONAL GCSE CHEMISTRY

9202/2 PAPER 2

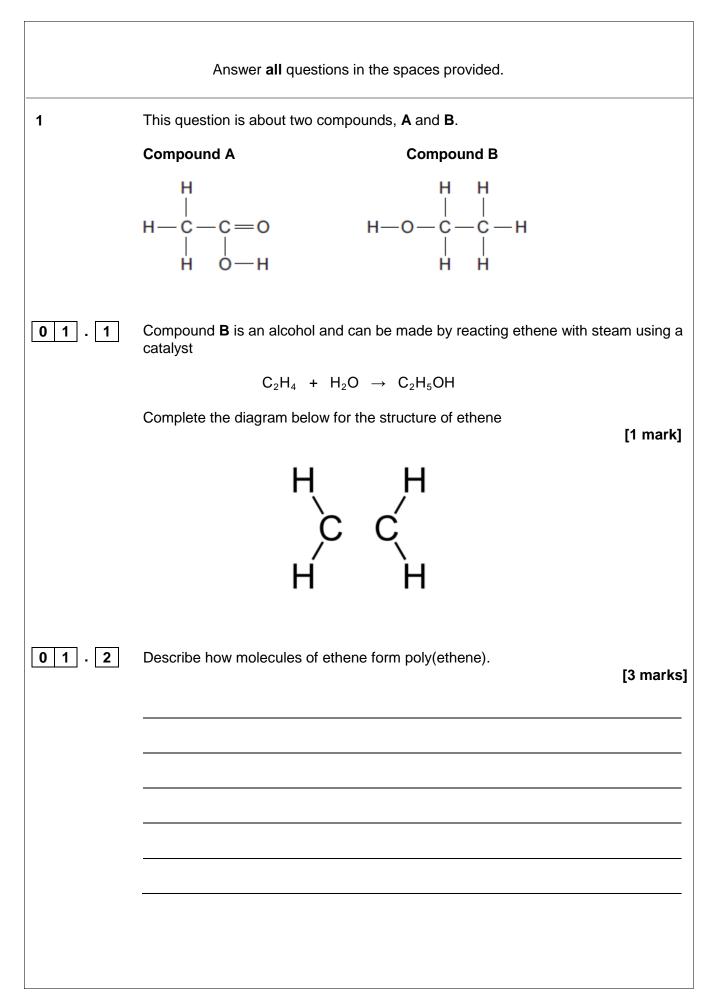
Specimen material

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a calculator
- the periodic table (enclosed).

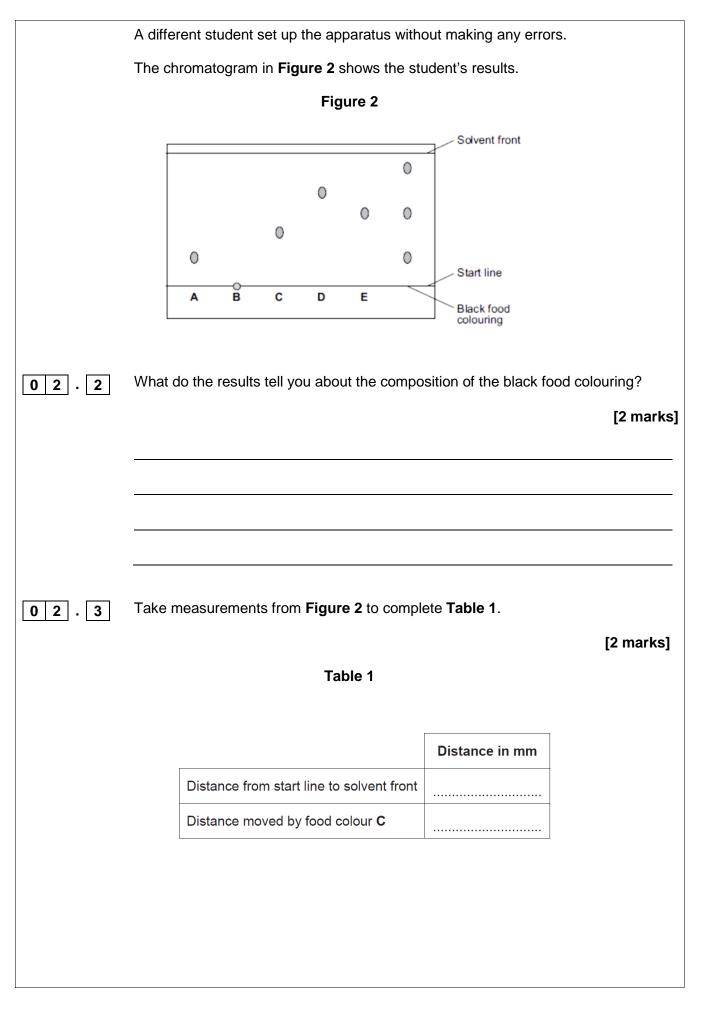
Instructions

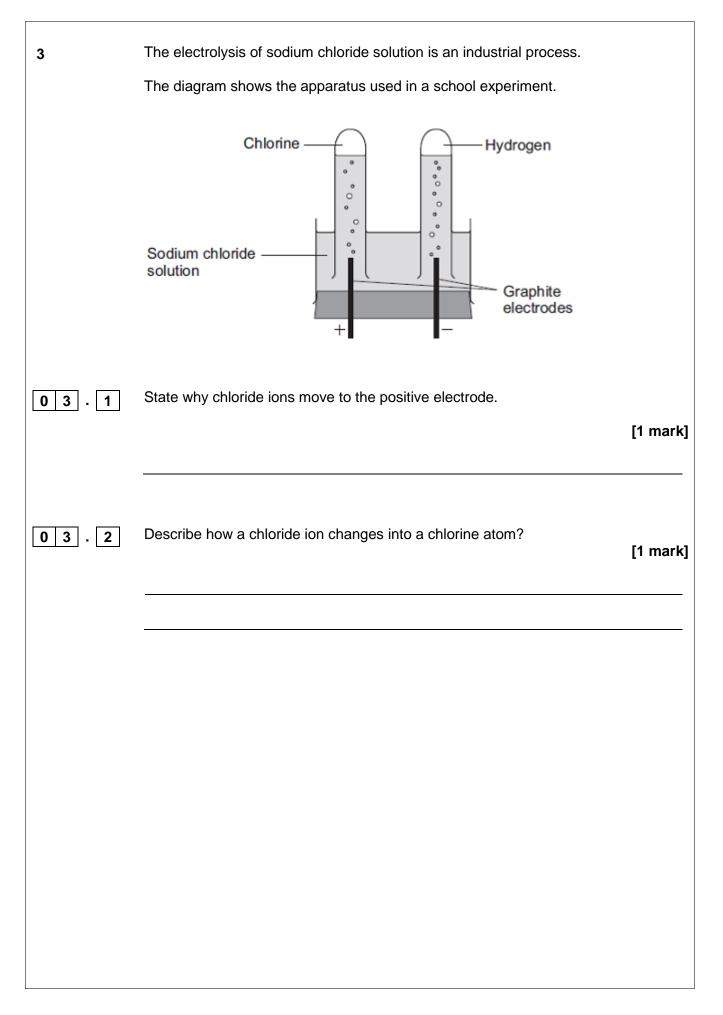

- Use black ink or black ball-point pen.
- Fill in the boxes at the bottom of this page.
- Answer all questions.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

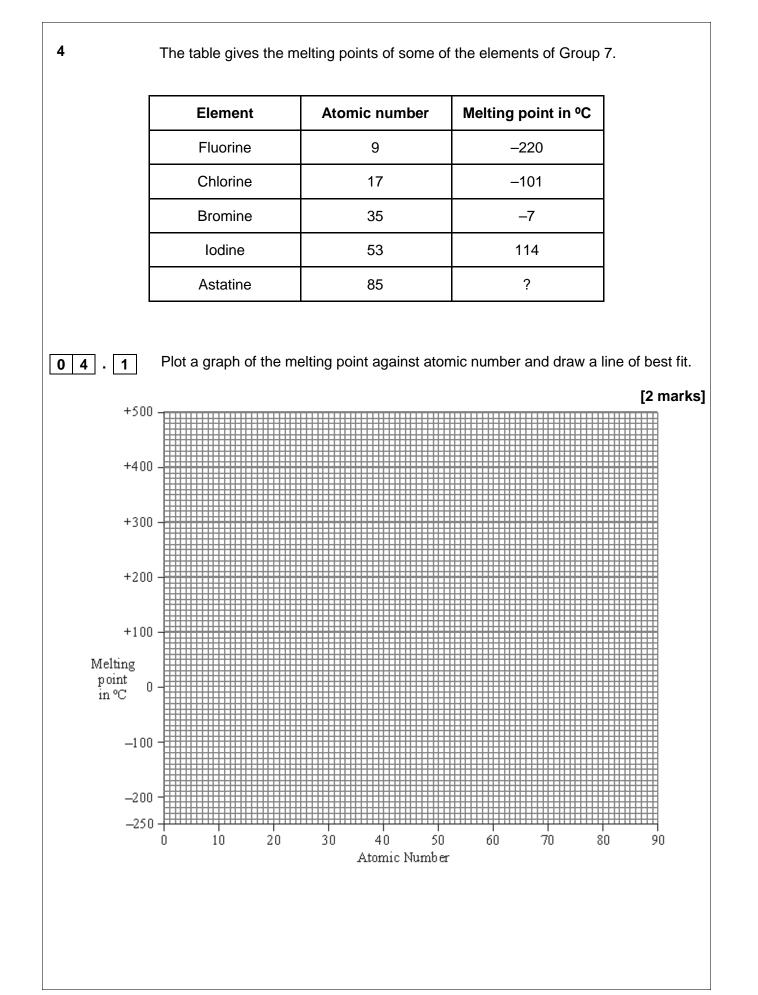
Please write clearly, in block cap	itals, to allow character computer recognition.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	


1 hour 30 minutes


01.3	Complete the sentence below using the correct answer from the box. [1 mark]				
	burned	decomposed	oxidised	reduced	
	To form compo	und A , compound B i	s		
01.4	Name compoun	d B .			[1 mark]
0 1 . 5	Compounds A a	and B are both colour	less liquids.		
	A test tube cont compound B .	ains a colourless liqu	id, which could	be either con	npound A or
	Describe a simp test tube.	ole chemical test to s	how which cor	npound, A or I	
					[2 marks]
C	ompounds A and	B react to produce of	compound C ar	nd compound	D.
Com	pound A	Compound B	Compour	nd C	
 H— C 	н с—с=о + H- н о—н	-0-C-C-H ⇒	H O H C C C O H	Н Н -С-С-Н Н Н	+ Compound D
01.6	What is the form	ula of compound D ?			[1 mark]

01.7	Compound C is an ester. Name compound C .	[1 mark]
01.8	State one use of esters.	[1 mark]

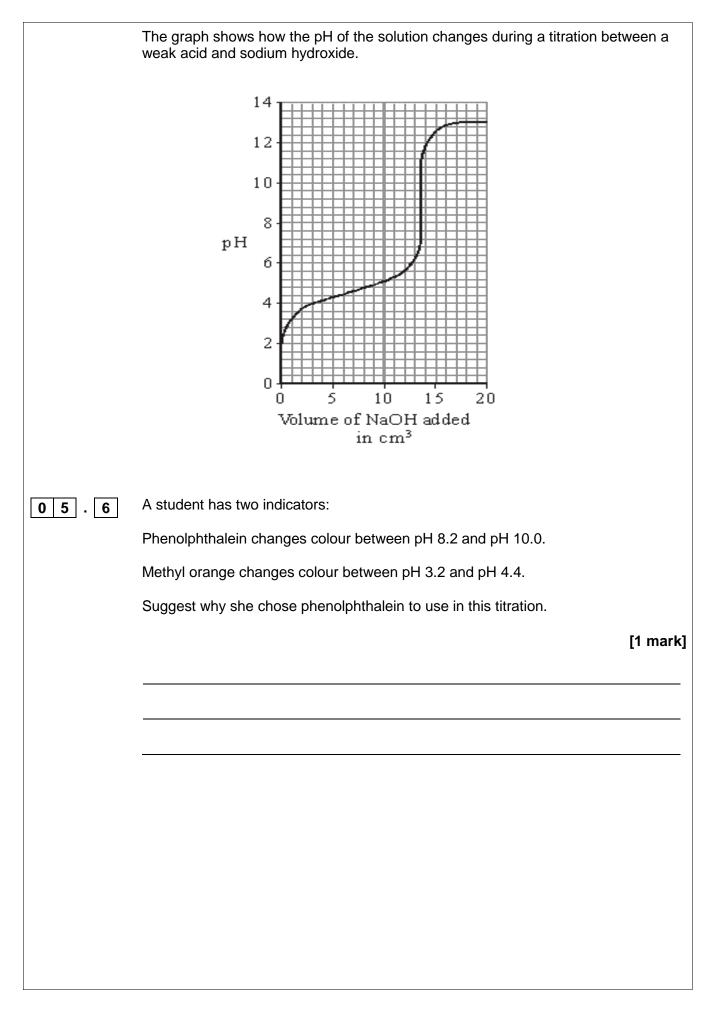
Chromatography can be used to separate components of a mixture. 2 A student used paper chromatography to analyse a black food colouring. The student placed spots of known food colours, A, B, C, D and E, and the black food colouring on a sheet of chromatography paper. The student set up the apparatus as shown in Figure 1. Figure 1 - Lid Chromatography paper Solvent 0 B ĉ b Ê Ā Start line drawn in ink Black food colouring The student made two errors in setting up the apparatus. Identify the two errors and describe the problem each error would cause. 02.1 [4 marks] Error Problem Error Problem



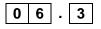
Rf value = Table 2 gives the results of chromatography experiments that were carried out of some known food colours, using the same solvent as the students. Table 2 Name of food colours, using the same solvent as the students. Table 2 Name of food colours, using the same solvent as the students. Fonceau 4R 62 5 0.95 Carmoisine 74 45 0.61 Fast red 67 58 17 0.29) 2 . 4 Use yo			[1 ma
Table 2 gives the results of chromatography experiments that were carried out of some known food colours, using the same solvent as the students. Table 2 Name of food colour Distance from start line to solvent front in mm Distance moved by food colour in mm R _f value Ponceau 4R 62 59 0.95 Carmoisine 74 45 0.61 Fast red 67 27 0.40 Erythrosine 58 17 0.29				•
Table 2 gives the results of chromatography experiments that were carried out of some known food colours, using the same solvent as the students. Table 2 Name of food colour Distance from start line to solvent front in mm Distance moved by food colour in mm R _f value Ponceau 4R 62 59 0.95 Carmoisine 74 45 0.61 Fast red 67 27 0.40 Erythrosine 58 17 0.29				
Some known food colours, using the same solvent as the students. Table 2 Name of food colour Distance from start line to solvent front in mm Distance moved by food colour in mm R _f value Ponceau 4R 62 59 0.95 Carmoisine 74 45 0.61 Fast red 67 27 0.40 Erythrosine 58 17 0.29			Rf value =	
Name of food colourDistance from start line to solvent front in mmDistance moved by food colour in mmRf valuePonceau 4R62590.95Carmoisine74450.61Fast red67270.40Erythrosine58170.292. 5Which of the food colours in Table 2 could be food colour C from the chromatogram?				
Name of food colourline to solvent front in mmDistance moved by food colour in mmRf valuePonceau 4R62590.95Carmoisine74450.61Fast red67270.40Erythrosine58170.292. 5Which of the food colours in Table 2 could be food colour C from the chromatogram?		Tab	le 2	
Carmoisine74450.61Fast red67270.40Erythrosine58170.29• 2 . 5Which of the food colours in Table 2 could be food colour C from the chromatogram?		line to solvent		R _f value
Fast red 67 27 0.40 Erythrosine 58 17 0.29 2 . 5 Which of the food colours in Table 2 could be food colour C from the chromatogram?	Ponceau 4R	62	59	0.95
Erythrosine 58 17 0.29 2 . 5 Which of the food colours in Table 2 could be food colour C from the chromatogram?	Carmoisine	74	45	0.61
2.5 Which of the food colours in Table 2 could be food colour C from the chromatogram?	Fast red	67	27	0.40
chromatogram?	Erythrosine	58	17	0.29
			e 2 could be food colour C	from the [1 marl

[1 mark]
1 mark]

The electrolysi hydroxide.	The electrolysis of sodium chloride solution also produces chlorine and sodium hydroxide.					
	In industry, the electrolysis of sodium chloride solution can be done in several types of electrolysis cell.					
Some informat	Some information about two different types of electrolysis cell is given below.					
	Mercury cell	Membrane cell				
Cost of construction	Expensive.	Relatively cheap.				
Additional substances used	Mercury, which is recycled. Mercury is toxic so any traces of mercury must be removed from the waste.	Membrane, which is made of a polymer. The membrane must be replaced every 3 years.				
Amount of electricity used for each tonne of chlorine produced in kWh	3400	2950				
Quality of chlorine produced	Pure.	Needs to be liquefied and distilled to make it pure.				
Quality of sodium hydroxide solution produced	50% concentration. Steam is used to concentrate the sodium hydroxide solution produced.	30% concentration. Steam is used to concentrate the sodium hydroxide solution produced.				
these two type	environmental and economic advantes of electrolysis cell.					


04.2	Extend your line to estimate a Estimate the melting point of		int of astatine. [2 marks
0 4 . 3	Which of the Group 7 elemen	nts are solids at 20 °C?	℃ [1 mark
	A student investigated the read The student added:	ctivity of the Group 7 elem	nents
•	aqueous chlorine to pota	ssium bromide and potas	sium iodide solutions
•	aqueous bromine to pota	ssium chloride and potas	sium iodide solutions
•	aqueous iodine to potass	sium chloride and potassi	um bromide solutions.
Th	e student's results are shown	below.	
Solutio	n Potassium chloride	Potassium bromide	Potassium iodide
Chlorine		Solution turned orange-brown	Solution turned brown
Bromine	No reaction		Solution turned brown
lodine	No reaction	No reaction	

04.4	Explain h	ow these	e results sho	ow the tre	nd in reactiv	ity of the	ese Group 7	elements. [2 marks]
04.5	Complete potassium	the equa	ation below, e.	, which re	presents the	reactior	n between c	hlorine and [1 mark]
	Cl ₂	+	2 KBr	\rightarrow		+	2 KCl	[1 mark]


Γ

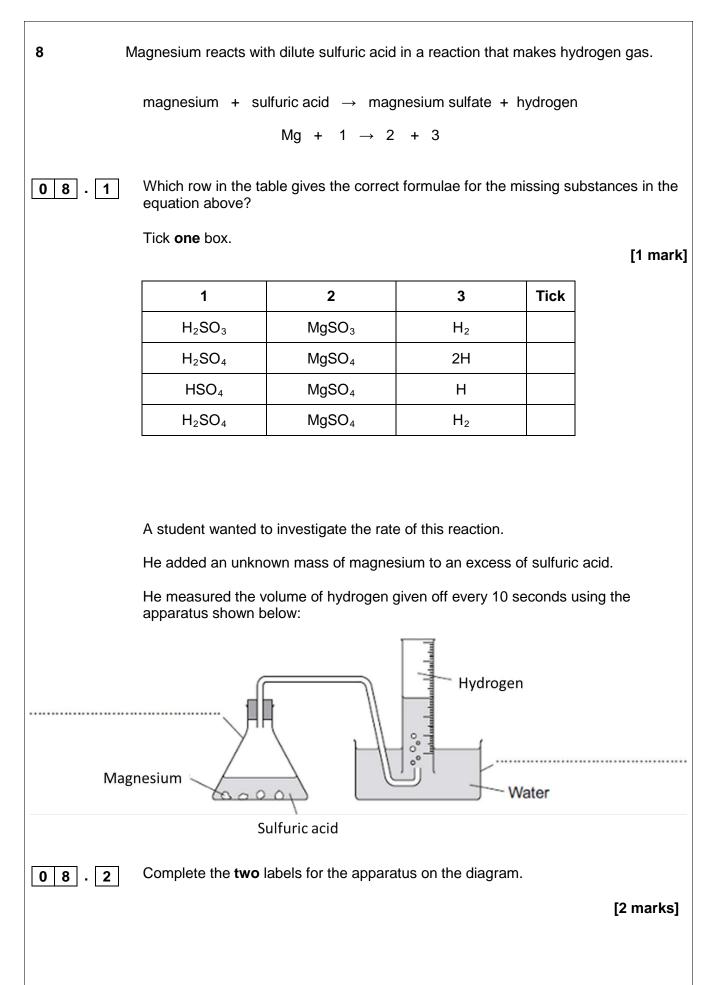
5	A student has a colourless solution.
	The student thinks the solution is dilute hydrochloric acid.
	The student adds universal indicator to this solution.
05.1	What colour would the universal indicator change to if the solution is hydrochloric acid? [1 mark]
05.2	Describe how the student could show that there are chloride ions in this solution. [2 marks]
	The results of a titration can be used to find the concentration of an acid.
	Burette Conical flask 25 cm ³ dilute hydrochloric acid and a few drops of phenolphthalein indicator

0 5 . 3	Describe how to use the apparatus to do a titration using 25 cm ³ of dilute hydrochloric acid.	
	In your answer you should include:	
	 how you will determine the end point of the titration how you will make sure the result obtained is accurate. 	
	[4 marks]
05.4	Hydrochloric acid is a strong acid.	
	Ethanoic acid is a weak acid.	
	What is meant by the term <i>weak acid</i> ?	1 mark]
	The displayed formula of ethanoic acid is:	
0 5 . 5	On the formula, draw a circle around the functional group in ethanoic acid.	
		[1 mark]

6	This question is about lithium and aluminium.
06.1	The reaction of lithium with water generates a gas. Describe the test you would use to positively identify this gas and the observation you would expect. [2 marks] Test
	Observation
06.2	Aluminium is made by the electrolysis of aluminium oxide. The equation for the reaction is shown below. $2 AI_2O_3 \rightarrow 4 AI + 3 O_2$ Calculate the mass of aluminium that can be obtained from 5100g of AI_2O_3 [3 marks]
	g

Most current rechargeable batteries use metallic lithium. A new type of battery based on metallic aluminium has been developed. Some facts about lithium and aluminium are shown below:

	Lithium	Aluminium
Melting Point / °C	180	660
Density g/cm ³	0.53	2.70
Storage	Stored under oil	In air – forms a protective
		oxide layer
Abundance in the Earth's crust	20	82,000
in ppm		
Mass mined tonne/yr	37,000	44,900,000
Reactivity	Ignites easily in air	Requires high temperatures
		before ignites
Charge/Recharge cycles	1000	200
at 100 efficiency		
Metal Cost \$/lb	300	0.87


Evaluate the replacement of lithium with aluminium in rechargeable batteries.

Use the data above.

[6 marks]

7	A student is investigating th	e electroplating of metal objects.
	She wants to test the hypoth	hesis:
	'The mass of metal deposite	ed depends on the time the current is flowing.'
	This is the method the stude	ent used:
	1. Take a metal object and	measure its mass
	2. Connect the object to a r	negative pole of a battery
	 Dip in a solution of coppe Let the electricity flow for 	
	-	t from the solution and measure its mass
	object to the battery and	the copper sulphate solution. Reconnect the metal let the electricity flow for a further minute
	7. Repeat steps 5 and 6 for	a further 5 times
	The student has made no no	otes about which variable she would need to control.
0 7 . 1		
	Give two variables that the	student should control to make this a fair test. [2 marks]
	1	
	2	
	The student collected the fo	llowing results
	Time, in minutes	Increase in mass of object, in grams
	1	2.4
	2	3.4 4.2
	3 4	4.2
	5	4.9
	6	4.9
	7	4.9
		I
07.2	Draw a sketch graph of the	student's results on the axes below.
	▲	[2 marks]
		[]

07.3	Describe the trend in the student's results.	
	Do the results support the student's hypothesis that 'The mass of metal deposite depends on the time the current is flowing'?	əd
	Explain your answer.	
	[4 ma	ırks]
0 7 . 4	Describe two ways the student's method could be improved to make the results more accurate.	
	[2 ma	irksj
07.5	When doing a similar investigation another student noticed the reading on the balance was 0.11 g when nothing was on it.	
	Describe two ways the student could overcome this error.	
	[2 ma	irksj

	The student's results are shown on the graph.	
Total volume of hydrogen released in cm ³	200-	
	f hydrogen	
	leased in cm ³	
	50 -	
	Time in seconds	
08.3	The rate of reaction can be calculated from the gradient of the tangent to the line best fit through the data.	
	Calculate from the tangent shown on the graph the rate of reaction at 30 seconds Give your answer to 2 significant figures. [3 mark]	
		_
	Rate = cm ³ per secor	nd
08.4	Give the rate of reaction at 90 seconds. [1 mail	rk]
	Rate = cm ³ per second	I

08.5	Calculate the number of moles of hydrogen produced by the reaction at completion.
	1 mole of a gas occupies 24,000cm ³
	[2 marks]
	Moles of hydrogen =
08.6	The number of moles of hydrogen produced is equal to the number of moles of magnesium used.
	Calculate the mass of magnesium used in the reaction.
	Give your answer to 2 significant figures. [3 marks]
	Mass = g

Gas in dry air	Density in kg/m ³	Melting point in °C	Boiling point in °C	Percentage (%) in air
Nitrogen	1.2506	-210	-196	78.08
Oxygen	1.4290	-219	-183	20.95
Carbon dioxide	1.977	-57	-57	0.033
Helium	0.1785	-272	-269	0.00052
Neon	0.8999	-249	-246	0.0019
Argon	1.7837	-189	-186	0.934
Krypton	3.74	-157	-153	0.00011
Xenon	5.86	-112	-108	0.0000087

In 1895, Lord Rayleigh isolated nitrogen from dry air by removing the other known gases, oxygen and carbon dioxide.

He then discovered that nitrogen from dry air had a different density to pure nitrogen produced from chemical reactions.

He concluded that nitrogen extracted from dry air was mixed with another gas.

09.

1

The density of nitrogen extracted from dry air was higher than the density of pure nitrogen.

Explain why.

Use the information above.

[2 marks]

9

The table shows some properties of gases in dry air.

	Gases from the air are separated to provide raw materials used in many different industrial processes.
	Steps in dry air separation:
	Step 1: Filter to remove solid particles
	Step 2: Remove carbon dioxide
	Step 3: Cool the remaining air to -200 °C
	Step 4: Separate by allowing the liquefied gases to warm up.
09.2	Carbon dioxide is removed before the air is cooled to $-200 \ ^{\circ}C$.
	Suggest one reason why. [1 mark]
09.3	Which two gases do not condense when the remaining air is cooled to –200 °C? [1 mark]
	and
09.4	Two gases in air do not separate completely when the liquefied gases are allowed to warm up.
	Name the two gases.
	Give a reason for your answer. [2 marks]
	END OF QUESTIONS

There are no questions printed on this page

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

 $Copyright \, \textcircled{C} \, 2017 \, Oxford \, International \, AQA \, Examinations \, and \, its \, licensors. \, All \, rights \, reserved.$