INTERNATIONAL GCSE PHYSICS

9203/2 PAPER 2

Specimen paper

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the bottom of this page.
- Answer all questions.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90 .

Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname \square

Forename(s) \square

Candidate signature \qquad

Answer all questions in the spaces provided.

$\mathbf{0}$	$\mathbf{1} \quad$ These questions are all about collisions.

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{1}$ | In a physics experiment, two equal-mass carts roll towards each other in opposite |
| :--- | :--- | :--- | :--- | directions. Both cars are moving at the same speed.

What is the momentum of both cars after they collide?
Tick one box.

Greater than it was before the collision.

Opposite to what it was before the collision.
The same as it was before the collision.
Zero.
 The handbrake of the van is not on.

Use the information in the diagram to calculate the mass of the van in Kilograms.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad kg

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ The graph shows the velocity of the car before, during and after the collision. |
| :--- | :--- | :--- | :--- |

Use the graph to calculate the distance travelled by the car, in meters, after the collision.
[2 marks]
\qquad
\qquad
\qquad
Distance $=$ \qquad m

| 0 | 1 | 4 |
| :--- | :--- | :--- | The front of the car is designed to crumple when it is in a collision.

Explain why this would reduce the risk of the driver being injured in the collision.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$2 \quad$ The diagram shows three cups.

A student would like to investigate the rate of heat energy loss when each cup is filled with hot water.

A

B

C

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$

Include

- An equipment list
- The independent variable
- The dependent variable
- What variables you need to control
- What you will need to measure
- Safety issues
\qquad

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ Complete the headings in the table of results to collect this data.

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$ The table of results above does not allow any room to take repeat readings.

Suggest two reasons why it is always a good idea to repeat your experiment.
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3} \quad$ The refractive index of some types of glass and some liquids is given in the table.

Type of glass	Refractive index	Liquid	Refractive index
Bakeware glass	1.47	Methanol	1.33
Car headlight glass	1.48	Water	1.33
Window glass	1.50	Alcohol	1.37
Bottle glass	1.52	Olive oil	1.47
Spectacle glass	1.54	Castor oil	1.48
Lead glass	1.62	Cinnamon oil	1.60

0	3	1	State the range of the refractive index of the liquids in the table.

From \qquad to \qquad .

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ Which type of glass has a refractive index outside the range for the liquids?

Tick one box.

Bakeware glass	\square
Lead glass	\square
Spectacle glass	\square
Window glass	\square

Label the following on the diagram: angle of incidence, angle of refraction, incident ray, refracted ray, normal.
[4 marks]

 Calculate the angle of refraction.
\qquad
\qquad
\qquad
Angle of refraction $=$ \qquad

$\mathbf{0}$	$\mathbf{3} .5$	$\mathbf{5}$ Olive oil is placed into a dish made of bakeware glass.

Predict what will happen to the speed of light when it passes from the olive oil to the bakeware glass.
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{1}$ An electric motor in a car receives 160000 J of energy and transfers |
| :--- | :--- | :--- | :--- | 62500 J into kinetic energy.

Sketch a Sankey diagram to show the energy transfer in the car.
Include a value for the wasted energy.

 $\mathbf{4}$. 2 What happens to the energy that is not transferred into kinetic energy by the car? Tick one box.

The energy is destroyed.
The energy is dissipated into the surroundings.
The energy is usefully transferred.
\square
\square

The energy has contracted.

\square

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3}$ Calculate the efficiency of the car.

Give your answer to 3 significant figures.
[2 marks]
\qquad
\qquad
\qquad
Efficiency = \qquad

0	4	4	The energy transfer described in part $\mathbf{0 4 . 1}$ takes place over 10.0 s.

Calculate the output power of the electric motor in the car.
[2 marks]
\qquad
\qquad
\qquad
power = \qquad W

| 0 | 4 |
| :--- | :--- | $\mathbf{5}$ Calculate the speed the car is moving at if the mass of the car is 1500 kg.

\qquad
\qquad
\qquad
\qquad
\qquad
Speed $=$ \qquad m / s

$\mathbf{0}$	5	The diagram shows a simple light-sensing circuit.

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{1}$

Tick one box.

Light dependent resistor

Light emitting diode
Thermistor
Variable resistor

The graph shows how the resistance of the component labelled \mathbf{X} varies with light intensity.

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{2} \quad$ Determine, using the graph, the resistance of component \mathbf{X} when the light intensity |
| :--- | :--- | :--- | is 20 lux.

[1 mark]
\qquad

Calculate the reading on the voltmeter when the light intensity is 20 lux.
[2 marks]
\qquad
\qquad
Voltmeter reading = \qquad volts

| 0 | 5 | $\mathbf{4}$ Complete the sketch graph, including a suitable scale on the y-axis, to show how |
| :--- | :--- | :--- | :--- | the voltmeter reading in the light-sensing circuit varies with light intensity.

The following passage is taken from the technical data supplied for component \mathbf{X} by the manufacturer.

For any given light intensity, the resistance of this component can vary by plus or minus 50% of the value shown on the graph of light intensity and resistance.

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{5}$ | $\mathbf{5}$ Calculate the maximum resistance that component \mathbf{X} could have at a light intensity |
| :--- | :--- | :--- | :--- | of 20 lux.

[1 mark]
\qquad
Maximum resistance $=$ \qquad kilohms

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{6}$ Explain why this light-sensing circuit would not be used to measure values of light |
| :--- | :--- | :--- | :--- | :--- | :--- | intensity.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | 6 | 1 |
| :--- | :--- | :--- | the number of hours they are used each week.

Electrical appliance	Power rating in W	Time the appliance is used each week in $\mathbf{~}$	Energy used each week in kWh
Light	150	75	11
Computer	750	40	30
Toaster	1000	1	1
Cooker	6500	4	

Complete the table by calculating the energy used each week by the cooker.
Write your answer in the table.

0	6

\qquad
\qquad

| $\mathbf{0}$ | 6 | 3 |
| :--- | :--- | :--- | The cost of running the light for one week is $£ 0.88$.

Calculate the cost of running the computer for one week.
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$ Some people wear magnetic bracelets as shown in Diagram 1.

There are magnetic poles at both \mathbf{A} and \mathbf{B}.
Part of the magnetic field pattern between \mathbf{A} and \mathbf{B} is shown.

Diagram 1

What are the poles on \mathbf{A} and \mathbf{B} ?
Tick one box.

Pole A is North and Pole B is North \square
Pole A is North and Pole B is South

Pole A is South and Pole B is North

Pole A is South and Pole B is South

| 0 | $\mathbf{7}$ | 2 | Diagram 2 shows two of the lines of the magnetic field pattern of a |
| :--- | :--- | :--- | :--- | current-carrying wire.

Diagram 2

The direction of the current is reversed.
State what happens to the direction of the lines in the magnetic field pattern.

| $\mathbf{0}$ | $\mathbf{7} .3$ |
| :--- | :--- | current-carrying wire in a magnetic field.

Complete the labels in Diagram 3.

Diagram 3

0	7	4

- the direction of the magnetic field between a pair of magnets
- the direction of the current in a wire in the magnetic field.

Diagram 4

In which direction does the force on the wire act?
Tick one box.

Into the plane of the paper

Out of the plane of the paper
Along the magnetic field line

In the opposite direction to the current in the wire

$\mathbf{0}$	$\mathbf{7} .5$	5

1 \qquad
2 \qquad
3 \qquad

| 0 | 7 | Diagram 5 shows part of a moving-coil ammeter as drawn by a student. |
| :--- | :--- | :--- | :--- |

The ammeter consists of a coil placed in a uniform magnetic field.
When there is a current in the coil, the force acting on the coil causes the coil to rotate and the pointer moves across the scale.

Diagram 5

The equipment has not been set up correctly.
State the change that would make it work.
[1 mark]
\qquad
\qquad

0	$\mathbf{7}$.	$\mathbf{7}$
Diagram 6		
6		

Diagram 6

Name the type of error the ammeter has.

| 0 | $\mathbf{8}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | Atoms contain three types of particle.

Which of the following particles are found in the nucleus of an atom?
Tick one box.
[1 mark]
Electrons and neutrons
Electrons and protons

Neutrons and protons

Protons, electrons and neutrons

| $\mathbf{0}$ | $\mathbf{8}$. 2 Complete the table below to show the relative charges of the sub atomic particles. |
| :--- | :--- | :--- |

Particle	Relative charge
Electron	-1
Neutron	
Proton	

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{3}$ The table below gives information about four radioactive isotopes.

Isotope	Type of radiation emitted	Half-life
iridium-192	gamma ray	74 days
polonium-210	alpha particle	138 days
polonium-213	alpha particle	less than 1 second
technetium-99	gamma ray	6 hours

Two isotopes of polonium are given in the table. In terms of particles in the nucleus:

Describe how these two isotopes of polonium are the same.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{8} .4$	$\mathbf{4}$

 flow through the patient's heart.

The radiation detected outside of the patient's body can be used to see if the heart is working correctly.

Explain why technetium-99 is more suitable for this use than polonium-210.
[2 marks]
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{8}$	6	Explain why technetium-99 is more suitable for this use than iridium-192.

\qquad
\qquad
\qquad
\qquad

0	8	7
A teacher used the equipment shown in the diagram to measure the count rate at		

The results are shown in the table below.

Distance in metres	Count rate in counts per minute	Corrected count rate in counts per minute
0.4	143	125
0.6	74	56
0.8	49	31
1.0	38	20
1.2	32	14
1.4	28	10
1.6	18	0
1.8	18	0
2.0	18	0

The background count rate has been used to calculate the corrected count rate.
Calculate, using data from the table, the value of the background count rate.
\qquad counts per minute

$\mathbf{0}$	$\mathbf{8} .8$	$\mathbf{8}$	Why does the teacher need to calculate a corrected count rate?

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{9}$ The radioactive source used in the demonstration emits only one type of radiation. |
| :--- | :--- | :--- | :--- |

Explain how can you tell from the data in the table that the radioactive source is not an alpha emitter

| $\mathbf{0}$ | $\mathbf{8} .10$ Plot a graph of corrected count rate against distance for distances between 0.4 m |
| :--- | :--- | and 1.4 m .

Draw a line of best fit to complete the graph.
[3 marks]

Turn over for the next question

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{1}$ When some metals are heated the resistance of the metal changes.

The equipment for investigating how the resistance of a metal changes when it is heated is shown in the diagram.

Describe an investigation a student could do to find how the resistance of a metal sample varies with temperature. The student uses the equipment shown.

Include in your answer:

- how the student should use the equipment
- the measurements the student should make
- how the student should use these measurements to determine the resistance
- how to make sure the results are valid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\longrightarrow \quad-$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{9} .2$

The metal samples all had the same cross-sectional area and were the same length.

Metal sample	Resistance at $\mathbf{0}^{\circ} \mathbf{C}$ in ohms	Resistance at $\mathbf{1 0 0}^{\circ} \mathbf{C}$ in ohms
\mathbf{P}	4.05	5.67
\mathbf{Q}	2.65	3.48
\mathbf{R}	6.0	9.17
\mathbf{S}	1.70	2.23

A graph of the results for one of the metal samples is shown.

Which metal sample, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ or \mathbf{S}, has the data shown in the graph? \square

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{3}$ One of the results is anomalous.

Suggest a reason for the anomalous result.
\qquad
\qquad

| 0 | 9 | 4 | The same equipment used in the investigation could be used as a thermometer known |
| :--- | :--- | :--- | :--- | as a 'resistance thermometer.'

Suggest two disadvantages of using this equipment as a thermometer compared to a liquid-in-glass thermometer.
[2 marks]
1.
\qquad
2.
\qquad

END OF QUESTIONS

There are no questions printed on this page

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 Oxford International AQA Examinations and its licensors. All rights reserved.

