

OXFORD AQA INTERNATIONAL GCSE GCSE Physics

Physics equation sheet

Insert

9203 GCSE PHYSICS EQUATION SHEET

$v = \frac{s}{t}$	v	velocity
	S	displacement
	t	time
$a = \frac{\Delta v}{t}$	a	acceleration
	Δv	change in velocity
	t	time taken
$F = m \times a$	F	force
	m	mass
	a	acceleration
$p=m \times v$	p	momentum
	m	mass
	v	velocity
A	F	force
$F = \frac{\Delta p}{c}$	Δp	change in momentum
t	t	time
	W	weight
$W = m \times g$	m	mass
	g	gravitational field strength
	F	force
$F = k \times e$	k	spring constant
	e	extension
	W	work done
$W = F \times d$	F	force
	d	distance moved in the direction of the force
W	P	power
$P = \frac{m}{4}$	W	work done
t	t	time
$P = \frac{E}{t}$	P	power
	E	energy transferred
	t	time
$E_p = m \times g \times h$	E_{p}	change in gravitational potential energy
	m	mass
	g	gravitational field strength (acceleration of free fall)
	h	height
	E_k	kinetic energy
$E_k = \frac{1}{2} \times m \times v^2$	m	mass
	v	velocity
$E_e = \frac{1}{2} \times k \times e^2$	E_e	elastic potential energy
	k	spring constant
	е	extension
$M = F \times d$	M	moment of the force
	F	force
	d	perpendicular distance from the line of action of the force to the pivot

$v = f \times \lambda$	$ \begin{array}{ll} \nu & \text{speed} \\ f & \text{frequency} \\ \lambda & \text{wavelength} \end{array} $			
$n = \frac{\sin i}{\sin r}$	n refractive index i angle of incidence r angle of refraction			
$n = \frac{1}{\sin c}$	n refractive index c critical angle			
magnification = $\frac{\text{image height}}{\text{object height}}$				
$E = m \times c \times \Delta \theta$	$ \begin{array}{ll} E & {\rm energy} \\ m & {\rm mass} \\ c & {\rm specific \ heat \ capacity} \\ \Delta \theta & {\rm temperature \ change} \end{array} $			
$E = m \times L_V$	$ \begin{array}{ll} E & \mbox{ energy} \\ m & \mbox{ mass} \\ L_{_V} & \mbox{ specific latent heat of vaporisation} \end{array} $			
$E = m \times L_F$	$ \begin{array}{ll} E & \mbox{ energy} \\ m & \mbox{ mass} \\ L_F & \mbox{ specific latent heat of fusion} \end{array} $			
efficiency = $\frac{\text{useful energy out}}{\text{total energy in}}$ (×100%)				
efficiency = $\frac{\text{useful power out}}{\text{total power in}}$ (×100%)				
$I = \frac{Q}{t}$	I current Q charge flow t time			
$V = \frac{E}{Q}$	Vpotential differenceEenergy transferredQcharge			
$V = I \times R$	Vpotential differenceIcurrentRresistance			
$P = I \times V$	 P power I current V potential difference 			
$E(kWh) = P(kW) \times t(h)$	Eenergy transferredPpowerttime			

$\frac{V_p}{V_s} = \frac{n_p}{n_s}$		potential difference across the primary coil potential difference across the secondary coil number of turns on the primary coil number of turns on the secondary coil
$V_p \times I_p = V_s \times I_s$	$\begin{vmatrix} V_p \\ I_p \\ V_s \\ I_s \end{vmatrix}$	potential difference across the primary coil current in the primary coil potential difference across the secondary coil current in the secondary coil