OXFORD

INTERNATIONAL GCSE COMBINED SCIENCE DOUBLE AWARD

9204/CE CHEMISTRY - PAPER 2 - EXTENSION PAPER

Specimen Material

1 hour 45 minutes

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a calculator
- the Periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the bottom of this page.
- Answer all questions.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname \square
Forename(s) \square

Candidate signature \qquad

Answer all questions in the spaces provided.

1 Some students did an experiment to find the temperature change when hydrochloric acid reacts with sodium hydrogencarbonate.

The results are in the table.

Number of spatula measures of sodium hydrogencarbonate	Start temperature in ${ }^{\circ} \mathbf{C}$	Final temperature in ${ }^{\circ} \mathrm{C}$	Change in temperature in ${ }^{\circ} \mathrm{C}$
$\mathbf{2}$	20	16	4
$\mathbf{4}$	20	14	6
$\mathbf{6}$	19	11	8
$\mathbf{8}$	20	10	10
$\mathbf{1 0}$	19	9	10
$\mathbf{1 2}$	20	10	10

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ Describe the trends shown in the students' results. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	State one variable that must be kept the same for the investigation.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ State the type of energy transfer for this reaction. |
| :--- | :--- | :--- | :--- |

Sodium hydrogencarbonate is used as baking powder for making cakes.

When the cake mixture is baked the sodium hydrogencarbonate decomposes.
The equation for the reaction is:

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \xrightarrow{\text { Heat }} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{4}$ The cake mixture rises when baked.

Use the equation to suggest why.

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ The same reaction can be reversed to produce sodium hydrogencarbonate from |
| :--- | :--- | :--- | :--- | sodium carbonate.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow 2 \mathrm{NaHCO}_{3}
$$

Do the reactants need to be heated?
Give a reason for your answer.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	6

Relative atomic masses $\left(A_{\mathrm{r}}\right): \mathrm{H}=1 ; \mathrm{C}=12 ; \mathrm{O}=16 ; \mathrm{Na}=23$
\qquad
\qquad
\qquad
\qquad
Relative formula mass $\left(M_{\mathrm{r}}\right)=$ \qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{7}$	Calculate the percentage by mass of carbon in sodium hydrogencarbonate.

\qquad
\qquad
Percentage of carbon $=$ \%

2 The label is from a packet of Low Sodium Salt.

A student tested some Low Sodium Salt to show that it contains carbonate ions and chloride ions.

| $\mathbf{0}$ | $\mathbf{2} \cdot$ | $\mathbf{1}$ Describe how you would test for carbonate ions. |
| :--- | :--- | :--- | :--- |

Describe what you would see.
\qquad
\qquad
\qquad
\qquad

Suggest why it is difficult to identify both of these ions in Low Sodium Salt using a flame test.
[1 mark]
\qquad
\qquad

Read the following information and then answer the questions.

Salt - friend or foe?

Sodium chloride (salt) is an essential mineral for our health. It is used to flavour and preserve foods.

Too much sodium in our diet may increase the risk of high blood pressure and heart disease.

Heart disease is a major cause of death in many countries. Some people also claim that too much sodium is poisonous and can cause cancer, while others say that more evidence is needed.

Many processed foods contain salt, so it is easy to exceed the recommended daily upper limit of about 5 g of salt per person. A 'healthier' amount should be about 3 g . Many people consume over 10 g of salt each day.

One way to reduce sodium in our diet is to use Low Sodium Salt. This has two thirds of the sodium chloride replaced by potassium chloride.

| 0 | $\mathbf{2}$ | $\mathbf{3}$ Suggest why removing all sodium chloride from food would be impractical. |
| :--- | :--- | :--- | :--- |

\qquad

| 0 | 2 | 4 |
| :--- | :--- | :--- | sodium chloride in foods.

\qquad

3 This question is about sodium and chlorine.

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{1}$ Figure 1 shows part of the periodic table.

Figure 1

Complete the sentences.

The elements in Group 1 are called the \qquad .

The elements in Group 7 are called the \qquad .

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{2}$ Sodium chloride (NaCl) is an ionic compound. |
| :--- | :--- | :--- | :--- |

Describe, in terms of electrons, how atoms of sodium and chlorine form ions.
You should give the charge on the sodium ion and the charge on the chloride ion.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 2 shows the electrons in the outer energy level of one chlorine atom.
Complete Figure 2 to show a chlorine molecule.

Figure 2
$\times \quad \mathrm{Cl} \times$

X×

Complete and balance the chemical equation for the reaction.

$$
\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \longrightarrow
$$

Table 1

Substance	pH
Pure water	
Sodium hydroxide solution	

Turn over for the next question

4 A student investigated displacement reactions of metals.
The student measured the temperature change when different metals react with copper sulfate solution.

He used the following method:

- put $50 \mathrm{~cm}^{3}$ of copper sulfate solution into a polystyrene cup
- measure the temperature of the solution
- calculate the mass of 0.050 mol of the metal
- add this mass of metal to the solution and stir the mixture
- measure the temperature of the mixture after one minute

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{1}$ Name a suitable piece of apparatus the student could use to measure $50 \mathrm{~cm}^{3}$ of |
| :--- | :--- | :--- | :--- | copper sulfate solution.

\qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ Calculate the mass of 0.050 mol of zinc.

Relative atomic mass $\left(A_{\mathrm{r}}\right): \mathrm{Zn}=65$
\qquad
\qquad
Mass = \qquad g

\qquad
\qquad

Figure 3

Temperature at start

Temperature after one minute

Write down the temperature at the start and after one minute.
\qquad
Temperature at the start = ${ }^{\circ} \mathrm{C}$

Temperature after one minute $=$ ${ }^{\circ} \mathrm{C}$

\qquad

The student did the experiment three times for each metal.
Table 2 shows the student's results.
Table 2

Metal	Temperature increase in $^{\circ} \mathrm{C}$			
	Experiment 1	Experiment 2	Experiment 3	Mean
Zinc	10	24	28	
Iron	19	17	18	18
Magnesium	61	63	59	

0	$\mathbf{4}$	6	Calculate the mean temperature increase for zinc and for magnesium.

You should take account of any anomalous results

Zinc
\qquad
Mean temperature increase $=$ \qquad ${ }^{\circ} \mathrm{C}$

Magnesium
\qquad
Mean temperature increase $=$ \qquad ${ }^{\circ} \mathrm{C}$

0	$\mathbf{4}$	$\mathbf{7}$	Which metal has the most precise results?

Give a reason for your answer.

Metal
Reason

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{8}$ Use the results in Table 2 to put the metals copper, iron, magnesium and zinc in |
| :--- | :--- | :--- | :--- | order of their reactivity.

Explain how you worked out the order of reactivity.

Most reactive \qquad
\qquad
\qquad
Least reactive \qquad
Explanation

The variables he controlled were the volume of copper sulfate solution, the number of moles of metal and the time when the temperature was measured.

The metal was in excess.
Suggest one other control variable.
Explain how the temperature change would be affected if this variable was not controlled.

Control variable
Explanation

5 This question is about rates of reaction.
Dilute hydrochloric acid reacts with sodium thiosulfate solution.
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{NaCl}+\mathrm{S}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1}$ The reaction produces a precipitate.

What is the name of the precipitate?
Tick one box.

A student investigated how the rate of a reaction changes with temperature.
The student used the following method:

- put $50 \mathrm{~cm}^{3}$ of sodium thiosulfate solution into a conical flask
- heat the sodium thiosulfate solution to the required reaction temperature
- put the flask on a cross drawn on a piece of paper
- add $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid and start a stopclock
- stop the stopclock when the cross can no longer be seen.

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{2}$ Why can the student no longer see the cross? |
| :--- | :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{5}$ | . | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | The student's results are shown in Table 3.

Table 3

Temperature in ${ }^{\circ} \mathrm{C}$	Time in seconds
20	155
30	78
40	65
50	19
60	10

Plot the results on the grid in Figure 4, choosing appropriate scales.

 Draw a best-fit smooth curve.Figure 4

Time in seconds

Temperature in ${ }^{\circ} \mathrm{C}$

0	5	4	Draw a ring around the anomalous point on the graph.

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{5}$	There was a systematic error in the student's method on page 15

Explain why the error in the method made the temperatures recorded in Table 3 inaccurate.

Suggest an improvement to the method that would make the recorded temperatures more accurate.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The student calculated the rate of each reaction by calculating 1/time.
She plotted a graph showing the rate of the reaction and the temperature.
Figure 5 shows the best-fit graph she drew.
Figure 5

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{6}$ How does the graph in Figure $\mathbf{5}$ show that the reaction is faster at higher |
| :--- | :--- | :--- | :--- | temperatures?

\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{7}$	Explain, in terms of particles, why the reaction is faster at higher temperatures.

[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 5 | 8 | The student said that the graph in Figure 5 shows that rate is directly proportional to |
| :--- | :--- | :--- | :--- | temperature.

Give a reason why the student was not correct.
[1 mark]
\qquad
\qquad
\qquad
$6 \quad$ Oil rigs are used to drill for crude oil.

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{1}$

Why is steel described as an alloy.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	2

Describe, as fully as you can, the structure and bonding in diamond.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	3	Polymers are produced from crude oil.

Describe the structure and bonding in a thermosoftening polymer and explain why thermosoftening polymers melt when heated.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 A portable stove uses propane gas.

A student did an experiment to find the energy released when propane is burned.

The student:

- put 750 g water into a beaker
- measured the temperature of the water, which was $17^{\circ} \mathrm{C}$
- heated the water by burning propane
- measured the temperature of the water again, which was then $64^{\circ} \mathrm{C}$.

The student calculated the energy released using the equation.

$$
Q=m \times 4.2 \times \Delta T
$$

Where:
$\mathrm{Q}=$ energy released (J)
$\mathrm{m}=$ mass of water (g)
$\Delta \mathrm{T}=$ temperature change $\left({ }^{\circ} \mathrm{C}\right)$

| $\mathbf{0}$ | $\mathbf{7}$ | . | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | Use the student's results to calculate the energy released in joules (J).

\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ To find how much propane had been used the student weighed the portable stove |
| :--- | :--- | :--- | :--- | :--- | before and after the experiment.

The mass of the camping stove decreased by 6.0 g .
Using this information and your answer to part 07.1, calculate the energy in kJ released when 1 mole of propane burns.

Relative formula mass $\left(M_{r}\right)$ of propane $=44$
\qquad
\qquad
\qquad
Energy released = \qquad kJ

0	7	3	The student's method does not give accurate results.

However, this method is suitable for comparing the energy released by different fuels.

Suggest why.
\qquad
\qquad

The student used bond energies to calculate the energy released when propane is burned.

The equation for the combustion of propane is:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Some bond energies are given in Table 4.
Table 4

Bond	Bond energy in kJ per mole
$\mathrm{C}=\mathrm{O}$	803
$\mathrm{O}-\mathrm{H}$	464

The displayed structures of the products are:

$$
\text { carbon dioxide } \quad \mathrm{O}=\mathrm{C}=\mathrm{O}
$$

water

| 0 | 7 | $\mathbf{4}$ Calculate the energy released by bond making when the products are formed. |
| :--- | :--- | :--- | :--- |

[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
Energy released = \qquad kJ per mole

| $\mathbf{0}$ | $\mathbf{7} .5$ | $\mathbf{5}$ The energy used for bond breaking of the reactants in the equation is 6481 kJ |
| :--- | :--- | :--- | per mole.

Calculate the overall energy change of this reaction.
\qquad
\qquad
Overall energy change $=$ \qquad kJ per mole

Turn over for the next question

8 Some electronic components are electroplated with gold.

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{1}$ Gold chloride is an ionic compound.

Explain why the ionic compound used for the electrolyte must be in solution.
[2 marks]
\qquad
\qquad
\qquad
\qquad

At the positive electrode gold atoms (Au) change into gold ions $\left(\mathrm{Au}^{3+}\right)$.

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2}$ Complete the half equation.

$$
\mathrm{Au} \longrightarrow \mathrm{Au}^{3+}+
$$

| 0 | 8 | 3 |
| :--- | :--- | :--- | Why is this an oxidation reaction?

\qquad
\qquad

Explain why.
[2 marks]
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{8}$	$\mathbf{5}$ The table shows properties of four metals.

	Relative hardness	Relative electrical conductivity	Melting point in ${ }^{\circ} \mathrm{C}$	Price in US\$ per ton
Copper	2.0	5.57	1083	5400
Tin	1.0	1.00	232	20000
Nickel	2.7	1.33	1453	11000
Silver	1.7	5.89	962	600000

Use the information in the table to decide which one of the metals you would use to electroplate electronic components.

Explain your choice.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

There are no questions printed on this page
$9 \quad$ Scientists found that a compound contained:
22.8% sodium; 21.8% boron; and 55.4% oxygen.
Use the percentages to calculate the empirical formula of the compound.
Relative atomic masses $\left(A_{r}\right): B=11 ; \mathrm{O}=16 ; \mathrm{Na}=23$
To gain full marks you must show all your working.
\qquad
Empirical formula = \qquad

There are no questions printed on this page

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

