INTERNATIONAL GCSE
 COMBINED SCIENCE DOUBLE AWARD

9204/PC PHYSICS - PAPER 3 - CORE TIER

Specimen Material

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a calculator
- the Physics Equation sheet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the bottom of this page.
- Answer all questions.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname \square
Forename(s) \square

Candidate signature \qquad

Answer all questions in the spaces provided.

1 Adaptors can be used to connect up to four appliances in parallel to one 110 V mains socket.

Table 1 gives a list of appliances and the current in them when they are connected to the mains.

Table 1

Appliance	Current in A
computer	1
television	2
toaster	9
vacuum cleaner	8
washing machine	10

 are plugged into the adaptor?

Tick one box.

11 A

12 A \square
20 A

30 A

| $\mathbf{0}$ | $\mathbf{1} .2$ | Calculate the total power when the television, computer and vacuum cleaner are |
| :--- | :--- | :--- | plugged into the adaptor.

Use the correct equation from the Physics Equations Sheet.
[2 marks]
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	The adaptor is fitted with a 13 A fuse.

State and explain what would happen to the fuse if the washing machine and toaster are plugged into the adaptor and turned on.
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{1}$ | $\mathbf{4}$ | For safety reasons, it is important that the toaster has an earth wire |
| :--- | :--- | :--- | :--- | connected to its outer metal case.

Explain why.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ The computer does not have an earth wire. It is safe to use because it is |
| :--- | :--- | :--- | :--- | double insulated.

Explain what the term double insulated means.
\qquad
\qquad
\qquad
\qquad

2
Figure 1 shows a rain drop falling.
After falling from a cloud, it accelerates to a constant velocity of $5 \mathrm{~m} / \mathrm{s}$. It then falls for 500 seconds at $5 \mathrm{~m} / \mathrm{s}$ before hitting the ground.

Figure 1

| 0 | 2 | 1 |
| :--- | :--- | :--- | What is force \mathbf{A} ?

Tick one box.
air resistance \square
internal
tension

weight \square

| $\mathbf{0}$ | $\mathbf{2} \cdot \mathbf{2}$ What is force \mathbf{B} ? |
| :--- | :--- | :--- |

Tick one box.
air resistance \square
tension

upthrust
weight \square

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{3}$ Explain why the raindrop falls at a constant velocity.

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2} .4$	$\mathbf{4}$ The raindrop fell for 100 m before reaching a constant velocity.

Calculate the total distance the raindrop fell.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
Distance $=$ \qquad m
 The raindrop had a mass of 0.1 g .

Calculate the size of the resultant force on the raindrop.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
\qquad
resultant force \qquad N
$3 \quad$ The Sankey diagram in Figure 2 is for an low energy lamp.

Figure 2

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$ Calculate the energy wasted by the low energy lamp.

Tick one box.

150 J
180 J
480 J
570 J

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{3}$ Calculate the efficiency of the low energy lamp |
| :--- | :--- | :--- | :--- |

Use the correct equation from the Physics Equations Sheet.
[2 marks]
\qquad
\qquad
Efficency = \qquad

Calculate the power of the low energy lamp.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
Power $=$
W

A company that makes filament lamps and LEDs provides information about some of their products.

Table 2 shows some of this information.
Table 2

	Power in watts	Lifetime in hours	Cost of bulb in $£$
Filament lamp	60	1250	2.00
LED	12	50000	16.00

\qquad
\qquad

$\mathbf{0}$	$\mathbf{3} .6$	$\mathbf{6}$ A homeowner is thinking about replacing his filament lamps with LEDs.

A 12 W LED provides the same amount of light as a 60 W filament lamp.
Suggest reasons why the homeowner is likely to choose LED.
Use the information given in Table 2.
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$	Draw one line from each circuit symbol to its correct name.

Circuit symbol

Light-dependent resistor (LDR)

Light-emitting diode (LED)

Figure 3 shows three circuits.
The resistors in the circuits are identical.
Each of the cells has a potential difference of 1.5 volts.
Figure 3

Circuit 1

Circuit 2

Circuit 3

| $\mathbf{0}$ | $\mathbf{4}, \mathbf{2}$ Use the correct answer from the box to complete the sentence. |
| :--- | :--- | :--- |

half	twice	the same as

The resistance of circuit 1 is \qquad the resistance of circuit 3.

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{3}$
Calculate the reading on voltmeter V_{2}.			

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{4}$ Which voltmeter, $\mathrm{V}_{1}, \mathrm{~V}_{2}$ or V_{3}, will give the lowest reading? |
| :--- | :--- | :--- |

Tick one box
Voltmeter V_{2} reading $=$ \qquad V

V_{1}	\square	
$\mathrm{~V}_{2}$	\square	
$\mathrm{~V}_{3}$	\square	
	\square	

A student wanted to find out how the number of resistors affects the current in a series circuit.

Figure 4 shows the circuit used by the student.
Figure 4

The student started with one resistor and then added more identical resistors to the circuit.

Each time a resistor was added, the student closed the switch and took the ammeter reading.

The student used a total of 4 resistors.
Figure 5 shows three of the results obtained by the student.
Figure 5

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{5}$ To get valid results, the student kept one variable the same throughout the |
| :--- | :--- | :--- | :--- | experiment.

\qquad
\qquad

0	4	.	6
The bar chart in Figure 5 is not complete.			

The result using 4 resistors is not shown.
Complete the bar chart to show the current in the circuit when 4 resistors were used.

| 0 | $\mathbf{4}$ | $\mathbf{7}$ What conclusion should the student make from the bar chart? |
| :--- | :--- | :--- | :--- |

A student was asked to investigate the temperature change of two metal cans, \mathbf{L} and \mathbf{M}. The cans were identical except for the outside colour.

The student filled the two cans with equal volumes of hot water.
He then placed the temperature sensors in the water and started the data logger.

The computer used the data to draw the graph in Figure 6.
Figure 6

$\mathbf{0}$	$\mathbf{5}$	$\cdot \mathbf{1}$	What is the initial temperature of both cans?

Tick one box.

$20^{\circ} \mathrm{C}$	\square
$25^{\circ} \mathrm{C}$	\square
$45^{\circ} \mathrm{C}$	\square
$88^{\circ} \mathrm{C}$	\square

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{2}$ For can \mathbf{L}, state the temperature drop of the water: |
| :--- | :--- | :--- | :--- |

in the first two-minute interval
\qquad
\qquad
in the second two-minute interval.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | $\cdot \mathbf{3}$ | In both cans the water cooled faster at the start of the investigation than at the end |
| :--- | :--- | :--- | :--- | of the investigation. Why?

| $\mathbf{0}$ | $\mathbf{5} \cdot \mathbf{4} \quad$ One can was black on the outside and the other can was white on the outside. |
| :--- | :--- | :--- | :--- |

[3 marks]
What colour was can L?
\qquad
\qquad

Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{5}$ The two cans were left for an hour and the temperature was recorded again. What |
| :--- | :--- | :--- | :--- | temperatue are the cans at?

Tick one box.

Can \mathbf{L} will be the same temperature as Can \mathbf{M}

Can \mathbf{L} will be at a higher temperature than Can \mathbf{M}

Can \mathbf{L} will be at a lower temperature than Can \mathbf{M}

Can \mathbf{L} and Can \mathbf{M} will still be decreasing in temperature

| $\mathbf{0}$ | $\mathbf{5} \cdot 6$ The student records the rate of temperature drop of a third can that was wrapped in |
| :--- | :--- | :--- | cloth.

Draw a third line on the graph in Figure 6 to show what you would predict the rate of temperature drop to be.

Universe

Earth
Milky Way
Sun

Smallest \qquad

| $\mathbf{0}$ | 6 | $\mathbf{2}$ Which one of the following describes the process by which energy is given out in |
| :--- | :--- | :--- | :--- |
| stars? | | |

Tick one box.

Atomic nuclei inside the star join together.
Atomic nuclei inside the star split apart.
Combustion of the gases in the star
Gases inside the star burn.

$\mathbf{0}$	6	$\mathbf{3}$ Draw a ring around a phrase from each pair to complete the sentence.

[1 mark]

Stars are stable I unstable during the 'main sequence' period of their life cycle because the gravitational forces acting inwards to / outwards from the centre of the star just balance / are greater than the total pressure pushing out.

| 0 | 6 | 4 |
| :--- | :--- | :--- | \mathbf{X}, \mathbf{Y} and \mathbf{Z}, will be in the 'main sequence' period of their life cycle.

Table 3

Star	Relative mass of the star compared to the Sun	Estimated 'main sequence' period in millions of years
\mathbf{X}	0.1	4000000
\mathbf{Y}	1.0	9000
\mathbf{Z}	40.0	200

This data suggests that there is a pattern linking the mass of a star and the number of years the star is in the 'main sequence' period of its life cycle.

Describe the pattern suggested by the table.
[1 mark]

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{5}$ Suggest why scientists cannot give the exact number of years a star will be in the |
| :--- | :--- | :--- | :--- | 'main sequence' period.

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{6}$ Nuclear fusion is the process by which energy is released in stars. |
| :--- | :--- | :--- | :--- |

Use the data in the table to describe how the rate at which energy is released by a star is related to the mass of the star.
[2 marks]
\qquad
\qquad
\qquad
\qquad

0	6	7	Describe the life cycle of a large star after its main sequence

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 Atoms contain three types of particle.

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$	Which particles are found in the nucleus of an atom?

Tick one box.
electrons and neutrons

electrons and protons
neutrons and protons

protons, electrons and neutrons \square

Table 4 gives information about four radioactive isotopes.

Table 4

Isotope	Type of radiation emitted	Half-life
iridium-192	gamma ray	74 days
polonium-210	alpha particle	138 days
polonium-213	alpha particle	less than 1 second
technetium-99	gamma ray	6 hours

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{2}$	Two isotopes of polonium are given in Table 4.

Compare the two isotopes of polonium in terms of the particles in their nuclei.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | . | $\mathbf{3}$ | A doctor injects a patient with a very small dose of technetium-99 to monitor the |
| :--- | :--- | :--- | :--- | :--- | blood flow through the patient's heart.

The radiation detected outside of the patient's body can be used to see if the heart is working correctly.

Explain why technetium-99 is the most suitable for this use.
\qquad
\qquad
\qquad

A teacher used the equipment shown in the diagram to measure the count rate at different distances from a radioactive source.

The detector detected radiation. The number detected per minute is called the count rate.

Figure 7

Metre rule
Her results are shown in Table 5.
Table 5

Distance in metres	Count rate in counts per minute	Corrected count rate in counts per minute
0.4	143	125
0.6	74	56
0.8	49	31
1.0	38	20
1.2	32	14
1.4	28	10
1.6	18	0
1.8	18	0
2.0	18	0

0	7	4
4	$C a l c u l a t e, ~ u s i n g ~ d a t a ~ f r o m ~ T a b l e ~ 5, ~ t h e ~ v a l u e ~ o f ~ t h e ~ b a c k g r o u n d ~ c o u n t ~ r a t e . ~$	

Background count rate $=$ \qquad counts per minute

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{5}$ Name the type of error caused by the background count in this experiment. |
| :--- | :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{6}$ The radioactive source used in the demonstration emits only one type of radiation.

How can you tell from the data in the table that the radioactive source is not an alpha emitter?
[1 mark]
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{7}$ | Plot a graph of corrected count rate against distance for distances between 0.4 m |
| :--- | :--- | :--- | :--- | and 1.4 m .

Draw a line of best fit to complete the graph in Figure 8.

Figure 8

8 The diagram shows three cups.
A student would like to investigate the rate of cooling when each cup is filled with hot water.

A

B

C

0	$\mathbf{8}$	$\mathbf{1}$	Write a method to perform this investigation.

Include:

- an equipment list
- the independent variable
- the dependent variable
- the variables you need to control
- what you will need to measure
- safety issues.
\qquad

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{2}$ Complete the headings in the table of results to collect this data.

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{3}$	The table of results above does not allow any room to take repeat readings.

Suggest two reasons why it is always a good idea to repeat your experiment.
[2 marks]
\qquad
\qquad
\qquad
\qquad
$9 \quad$ Bats use the reflection of high pitched sound waves to determine the position of objects.

Figure 9 shows a bat and an insect flying in front of the bat.

Figure 9

| $\mathbf{0}$ | $\mathbf{9} \cdot \mathbf{1}$ What determines the pitch of a sound wave? |
| :--- | :--- | :--- |

Tick one box.
amplitude

frequency

velocity \square

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{2}$ State the name given to reflected sound waves.

| $\mathbf{0}$ | $\mathbf{9} .3$ | $\mathbf{3}$ The bat emits a sound wave with a frequency of 25.0 kHz and a wavelength of |
| :--- | :--- | :--- | 0.0136 metres.

Calculate the speed of this sound wave.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{4}$	$\mathbf{4}$ Sound waves are longitudinal.

Describe a longitudinal sound wave.
\qquad
\qquad
\qquad
\qquad

Infrared and microwaves are two types of electromagnetic radiation.

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{5}$ State one example of the use of each type of radiation for communication. |
| :--- | :--- | :--- | :--- |

[2 marks]
Infrared
Microwaves

State two of these properties.
[2 marks]
\qquad
\qquad
\qquad

10 Sweating helps to prevent people from getting too hot.

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	When sweat evaporates, it cools the skin.

Explain why.
\qquad

| $\mathbf{1}$ | $\mathbf{0} .2$ | $\mathbf{2}$ Higher temperature increases the rate at which sweat will evaporate from a |
| :--- | :--- | :--- | person's skin.

State two other factors that will increase the rate of evaporation.
\qquad
\qquad
\qquad
\qquad

Air conditioning units are used to cool a room.
Warm air enters the air conditioning unit and the air is cooled.

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{3}$ Air conditioning units are usually positioned near the ceiling.

Explain why.
[2 marks]
\qquad
\qquad
\qquad
\qquad

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{4}$ |
| :--- | :--- | :--- | The air in the room has a specific heat capacity of $1250 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.

The air is cooled from $33^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ by an air conditioning unit.
The air conditioning unit removes 6000 J of energy per second.
Calculate the mass of air per second passing through the air conditioning unit.
Use the correct equation from the Physics Equation Sheet.
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

There are no questions printed on this page

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

