INTERNATIONAL GCSE
 COMBINED SCIENCE DOUBLE AWARD

9204/PE PHYSICS - PAPER 3 - EXTENSION PAPER

Specimen material

1 hour 45 minutes

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a calculator
- the Physics Equation sheet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the bottom of this page.
- Answer all questions.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100 .

Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname \square
Forename(s) \square

Candidate signature \qquad

Answer all questions in the spaces provided.

1 Atoms contain three types of particle.

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{1}$

Tick one box.

electrons and neutrons	\square
electrons and protons	\square
neutrons and protons	\square
protons, electrons and neutrons	\square

Table 1 gives information about four radioactive isotopes.

Table 1

Isotope	Type of radiation emitted	Half-life
iridium-192	gamma ray	74 days
polonium-210	alpha particle	138 days
polonium-213	alpha particle	less than 1 second
technetium-99	gamma ray	6 hours

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Two isotopes of polonium are given in Table $\mathbf{1}$. |
| :--- | :--- | :--- | :--- |

Compare the two isotopes of polonium in terms of the particles in their nuclei.
[1 mark]
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ A doctor injects a patient with a very small dose of technetium-99 to monitor the |
| :--- | :--- | :--- | :--- | blood flow through the patient's heart.

The radiation detected outside of the patient's body can be used to see if the heart is working correctly.

Explain why technetium-99 is the most suitable for this use.
\qquad
\qquad
\qquad

Question 1 continues on the next page

A teacher used the equipment shown in the diagram to measure the count rate at different distances from a radioactive source.

The detector detected radiation. The number detected per minute is called the count rate.

Figure 1

Her results are shown in Table 2.
Table 2

Distance in metres	Count rate in counts per minute	Corrected count rate in counts per minute
0.4	143	125
0.6	74	56
0.8	49	31
1.0	38	20
1.2	32	14
1.4	28	10
1.6	18	0
1.8	18	0
2.0	18	0

0	1	4
4	Calculate, using data from Table 2, the value of the background count rate.	

Background count rate $=$ \qquad counts per minute

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5}$	Name the type of error caused by the background count in this experiment.

\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{6}$ The radioactive source used in the demonstration emits only one type of radiation. |
| :--- | :--- | :--- | :--- |

How can you tell from the data in the table that the radioactive source is not an alpha emitter?
[1 mark]
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{7}$ | Plot a graph of corrected count rate against distance for distances between 0.4 m |
| :--- | :--- | :--- | :--- | and 1.4 m .

Draw a line of best fit to complete the graph in Figure 2.

Figure 2

2 The diagram shows three cups.
A student would like to investigate the rate of cooling when each cup is filled with hot water.

A

B

C

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Write a method to perform this investigation.

Include:

- an equipment list
- the independent variable
- the dependent variable
- the variables you need to control
- what you will need to measure
- safety issues.
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{2}$ Complete the headings in the table of results to collect this data. |
| :--- | :--- | :--- | :--- |

Suggest two reasons why it is always a good idea to repeat your experiment.
\qquad
\qquad
\qquad
\qquad

3 Bats use the reflection of high pitched sound waves to determine the position of objects.

Figure 3 shows a bat and an insect flying in front of the bat.
Figure 3

| $\mathbf{0}$ | $\mathbf{3} \cdot \mathbf{1}$ | What determines the pitch of a sound wave? |
| :--- | :--- | :--- | :--- |

Tick one box.
amplitude

frequency \square
velocity \square

| $\mathbf{0}$ | $\mathbf{3} \cdot \mathbf{2}$ State the name given to reflected sound waves. |
| :--- | :--- | :--- | :--- |

| $\mathbf{0}$ | $\mathbf{3} .3$ | $\mathbf{3}$ The bat emits a sound wave with a frequency of 25.0 kHz and a wavelength of l |
| :--- | :--- | :--- | 0.0136 metres.

Calculate the speed of this sound wave.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{4}$	Sound waves are longitudinal.

Describe a longitudinal sound wave.
\qquad
\qquad
\qquad
\qquad

Infrared and microwaves are two types of electromagnetic radiation.

| $\mathbf{0}$ | $\mathbf{3}$ | $\cdot \mathbf{5}$ | State one example of the use of each type of radiation for communication. |
| :--- | :--- | :--- | :--- | :--- |

[2 marks]
Infrared
Microwaves

$\mathbf{0}$	$\mathbf{3} \cdot 6$	Some of the properties of infrared and microwaves are the same.

State two of these properties.
[2 marks]
\qquad
\qquad
\qquad

4 Sweating helps to prevent people from getting too hot.

$\mathbf{0}$	$\mathbf{4}$	$\cdot \mathbf{1}$	When sweat evaporates, it cools the skin.

Explain why.
\qquad

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2}$ Higher temperature increases the rate at which sweat will evaporate from a |
| :--- | :--- | :--- | person's skin.

State two other factors that will increase the rate of evaporation.
\qquad
\qquad
\qquad
\qquad

Air conditioning units are used to cool a room.
Warm air enters the air conditioning unit and the air is cooled.

| 0 | 4 | 3 |
| :--- | :--- | :--- | Air conditioning units are usually positioned near the ceiling.

Explain why.
\qquad
\qquad
\qquad
\qquad

The air is cooled from $33^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ by an air conditioning unit.
The air conditioning unit removes 6000 J of energy per second.
Calculate the mass of air per second passing through the air conditioning unit.
Use the correct equation from the Physics Equation Sheet.
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 5 | $\mathbf{1}$ Describe the difference between an alternating current (ac) and a direct current |
| :--- | :--- | :--- | (dc).

[2 marks]
\qquad
\qquad
\qquad
\qquad

Figure 4 shows a hairdryer.
Figure 5 shows how the heaters and fan of the hairdryer are connected to a 3-pin plug.

The hairdryer does not have an earth wire.

Figure 4
Figure 5

0	5	$\mathbf{2}$ Why does the hairdryer not need an earth wire?

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{3}$

Which switch(es) should you close to allow:
only the fan to work; \qquad
heater 2 to work? \qquad

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{4}$

[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 continues on the next page

Table 3 shows the current drawn from the 230 volt mains electricity supply when different parts of the hairdryer are switched on.

Table 3

	Current in amps
Fan only	1.0
Fan and heater 1	4.4
Fan and both heaters	6.5

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{5}$ Calculate the maximum power of the hairdryer. |
| :--- | :--- | :--- | :--- |

Use the correct equation from the Physics Equation Sheet.
\qquad
\qquad
Maximum power $=$ \qquad W

6 In 2012 a skydiver set a world record for the highest free fall from an aircraft. After falling from the aircraft, he reached a maximum velocity after 632 seconds.

$\mathbf{0}$	6	$\mathbf{1}$	Velocity is a vector, chose one other vector.

Tick one box.
[1 mark]
acceleration \square
distance \square
speed \square
time \square

| $\mathbf{0}$ | $\mathbf{6} .2$ | $\mathbf{2}$ Suggest which one of the velocity-time graphs, \mathbf{K}, \mathbf{L} or \mathbf{M}, shows the motion of the |
| :--- | :--- | :--- | skydiver during the 5 seconds after he reaches maximum velocity.

K

L

M

Tick one box.
[1 mark]

K \square
L \square
M \square

The weight of the chest pack was 54 N .
The gravitational field strength is $9.8 \mathrm{~N} / \mathrm{kg}$.
Calculate the mass of the chest pack.
[2 marks]
\qquad
Mass of chest pack $=$ kg

During his fall, the skydiver's acceleration was not uniform.
Immediately after leaving the aircraft, the skydiver's acceleration was $10 \mathrm{~m} / \mathrm{s}^{2}$.
Estimate, without any calculation, his acceleration a few seconds after leaving the aircraft.

0	6	4	Explain your value of acceleration in terms of forces.

Estimate \qquad
Explanation \qquad
\qquad
\qquad
\qquad

The graph in Figure 6 below shows how the height of a different sky-diver changes with time.

Figure 6

$\mathbf{0}$	$\mathbf{6} .5$	$\mathbf{5}$ Describe the skydiver's motion during each of the following stages of the dive.

[2 marks]
A - B

C-D

| $\mathbf{0}$ | $\mathbf{6}$. 6 Calculate the average speed during the descent. |
| :--- | :--- | :--- |

7 Nuclear fission and nuclear fusion are two processes that release energy.

0	$\mathbf{7}$	$\mathbf{1}$	Complete the sentences.

Nuclear fisson takes place within a \qquad .

Nuclear fusion naturally takes place within a \qquad .

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{2}$ | State one way in which the process of nuclear fusion differs from the process of |
| :--- | :--- | :--- | :--- | :--- | nuclear fission.

The following nuclear equation represents the fission of uranium-235 (U-235).

Chemical symbols:
Ba-barium
Kr - krypton

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ Describe, using the information in the equation, the process of nuclear fission. |
| :--- | :--- | :--- | :--- |

[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	7	4	An isotope of barium is $\mathrm{Ba}-139$.

Ba-139 decays by beta decay to lanthanum-139 (La-139).
Complete the nuclear equation that represents the decay of Ba-139 to La-139.
[3 marks]
\qquad
$8 \quad$ Waves may be longitudinal or transverse.

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{1}$ Describe the differences between longitudinal waves and transverse waves.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 7 shows the electromagnetic spectrum.
Figure 7

Radio waves	Microwaves	Infrared	Visible light	Ultraviolet	X-rays	Gamma rays

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{2}$

amplitude	frequency	speed	wavelength

The arrow in the diagram is in the direction of increasing \qquad

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{3}$	What is the range of wavelengths for waves in the electromagnetic spectrum?

Tick one box.
[1 mark]
10^{-15} to $10^{4} \mathrm{~m}$ \square
10^{-4} to $10^{4} \mathrm{~m}$ \square 10^{4} to $10^{15} \mathrm{~m}$
 10^{-15} to $10^{15} \mathrm{~m}$ \square

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{4}$ The wavelength of a radio wave is 1500 m.

The speed of radio waves is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
Calculate the frequency of the radio wave.
[2 marks]
\qquad
\qquad
\qquad
Frequency = \qquad Hz

0	8	6	$G i v e$

[1 mark]
$9 \quad$ Figure 8 shows the Sankey diagram for a kettle.
Figure 8

0	$\mathbf{9}$	$\mathbf{1}$ Give one way the input energy would be wasted.

\qquad
\qquad

| 0 | 9 | $\mathbf{2}$ Calculate the efficiency of the kettle. |
| :--- | :--- | :--- | :--- |

Use the correct equation from the Physics Equation sheet.
\qquad
\qquad
\qquad
\qquad
Efficency = \qquad

Figure 9 shows the label on a different electric kettle.
Figure 9

 Calculate the energy transferred by this kettle.

Use the correct equation from the Physics Equation sheet.
\qquad
\qquad
\qquad
Energy transferred = \qquad J

| 0 | 9 | $\mathbf{4}$ Calculate how many minutes it takes the kettle to boil. |
| :--- | :--- | :--- | :--- |

Use the correct equation from the Physics Equation sheet.
Give your answer to two significant figures.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
Time = \qquad s

10 Figure 10 shows a simple light-sensing circuit.
Figure 10

$\mathbf{1}$	$\mathbf{0} \cdot$	$\mathbf{1}$	What is component X ?

Tick one box.

Light dependent resistor

Light emitting diode

Thermistor
Variable resistor \square

Figure 11 shows how the resistance of the component labelled \mathbf{X} varies with light intensity.

Figure 11

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{2}$ Determine, using the graph in Figure 11, the resistance of component \mathbf{X} when the |
| :--- | :--- | :--- | light intensity is 20 lux.

[1 mark]
\qquad

Calculate the reading on the voltmeter when the light intensity is 20 lux.
[2 marks]
\qquad
\qquad
Voltmeter reading $=$ \qquad volts

1	0	4
4	$C o m p l e t e ~ t h e ~ s k e t c h ~ g r a p h ~ i n ~ F i g u r e ~ 12, ~ i n c l u d i n g ~ a ~ s u i t a b l e ~ s c a l e ~ o n ~ t h e ~$	y
-axis, to		

[2 marks]
Figure 12

The following passage is taken from the technical data supplied for component \mathbf{X} by the manufacturer.

For any given light intensity, the resistance of this component can vary by plus or minus 50% of the value shown on the graph of light intensity and resistance.

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{5} \quad$ Calculate the maximum resistance that component \mathbf{X} could have at 20 lux light |
| :--- | :--- | :--- | :--- | intensity.

[2 marks]
\qquad
Maximum resistance $=$ \qquad $\mathrm{k} \Omega$

| 1 | $\mathbf{0} .6$ | 6 |
| :--- | :--- | :--- | intensity.

\qquad
\qquad
\qquad

There are no questions printed on this page

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 Oxford International AQA Examinations and its licensors. All rights reserved.

