OXFORD AQA INTERNATIONAL A-LEVEL CHEMISTRY
 (9620)

PAPER 5

Specimen 2018
Morning Time allowed: 1 hour 25 minutes

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data booklet

Instructions

- use black ink or ball-point pen
- answer all questions
- show all your working.

Information

- The marks for questions are shown in brackets
- The maximum mark for this paper is 60 marks
Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number \square
Surname

Forename(s) \square

[^0]\qquad

Answer all questions in the spaces provided.

1 Water that reacts with soap to form a scum is called Hard Water. Hardness is caused by the presence of dissolved calcium or magnesium ions. The hardness of a sample of water can be determined by titrating the water with a solution containing the ligand EDTA ${ }^{4-}$. EDTA ${ }^{4-}$ reacts in a 1:1 ratio forming very stable complexes with these metal ions.
 $\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$.

| $\mathbf{0}$ | $\mathbf{1} .2$ | $\mathbf{2}$ A solution containing a known concentration of EDTA |
| :--- | :--- | :--- |${ }^{4}$ ions can be prepared using the hydrated disodium salt (RFM $=372.4$)

Calculate the mass of the hydrated disodium salt required to prepare $250 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution.
Outline the procedure for the preparation of this solution.
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathrm{A} 25.0 \mathrm{~cm}^{3}$ sample of water reacted with $5.55 \mathrm{~cm}^{3}$ of a $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of |
| :--- | :--- | :--- | :--- | EDTA ${ }^{4}$ ions.

Calculate the concentration, in $\mathrm{g} \mathrm{dm}^{-3}$, of the Ca^{2+} ions present in the water.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 multiple measurements.

Estimate the maximum percentage error in using the burrette in the titration in Question 01.4.
\qquad
\qquad

[1 mark]
\qquad
\qquad

| 0 | $\mathbf{1}$ | $\mathbf{6}$ During the titration, the chemist rinsed the inside of the conical flask with deionised |
| :--- | :--- | :--- | water. The water used for rinsing remained in the conical flask.

Give one reason why this rinsing can improve the accuracy of the end-point of the titration.
[1 mark]
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1} .7$	$\mathbf{7}$

[1 mark]
\qquad
\qquad

2 Benzocaine is a useful anaesthetic.
Benzocaine is an ester and can be prepared by the reaction of 4-aminobenzoic acid with ethanol:

Benzocaine

1.20 g of 4 -aminobenzoic acid were placed with an excess of ethanol into a $100 \mathrm{~cm}^{3}$ round bottomed flask. $2 \mathrm{~cm}^{3}$ of concentrated sulfuric acid were added and the flask was swirled. The reaction mixture was then heated under reflux for 45 minutes. The resulting mixture was then allowed to cool to room temperature.

The reaction mixture was placed into a beaker and aqueous sodium carbonate solution was added dropwise, and the mixture was swirled gently. During this stage gas was evolved, and the benzocaine formed as a precipitate. Addition of sodium carbonate solution was continued until gas was no longer evolved.

The benzocaine was then isolated, and the solid was washed with water. Once the benzocaine has been isolated, it was recrystallized using a suitable solvent. Finally, the melting point was determined.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ Explain why reflux is commonly used to complete organic preparations. |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .2$ | $\mathbf{2}$ Calculate the maximum mass of benzocaine that can be formed by the reaction of |
| :--- | :--- | :--- | 4 -aminobenzoic acid $(\mathrm{Mr}=137.0)$ with excess ethanol.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	2	3
3	Suggest the main reason why the actual mass that is obtained is less than the	

[1 mark]
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{4}$ Identify the gas evolved when the aqueous sodium carbonate is added and explain |
| :--- | :--- | :--- | :--- | why this gas is evolved during this stage of the procedure.

[2 marks]
Identity of the gas \qquad
Explanation \qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2} .5$	$\mathbf{5}$ Explain why the benzocaine is washed with water.

[1 mark]

| $\mathbf{0}$ | $\mathbf{2} \cdot \mathbf{6}$ The benzocaine was recrystallised to purify it. $. . .0 \mid$ |
| :--- | :--- | :--- |

Outline the method that should be used to recrystallise the benzocaine.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2} .7$	$\mathbf{7}$ The purity of the product can be determined by measuring the melting point.

State two observations about the melting point that indicates that it is pure.
\qquad
\qquad
\qquad

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD \square wrong methods \square
If you want to change your answer you must cross out your original answer as shown. \qquad
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

| $\mathbf{0}$ | $\mathbf{3}$ Which of these elements has the highest second ionisation energy? |
| :--- | :--- | :--- |

A $\quad \mathrm{Na}$
B $\quad \mathrm{Mg}$

C $\quad \mathrm{Ne}$
D Ar \square

04
Which of the following shows chlorine in its correct oxidation states in the compounds shown?

	HCl	KClO_{3}	HClO	
A	-1	+3	+1	0
B	+1	-5	-1	0
C	-1	+5	+1	0
D	+1	+5	-1	0

0	5	Which of the following contains the most chloride ions?

A $\quad 10 \mathrm{~cm}^{3}$ of $3.30 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ aluminium chloride solution
B $\quad 20 \mathrm{~cm}^{3}$ of $5.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ calcium chloride solution

C $\quad 30 \mathrm{~cm}^{3}$ of $3.30 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid
D $\quad 40 \mathrm{~cm}^{3}$ of $2.50 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ sodium chloride solution
\square

Figure 1

Number of molecules

Figure 1 shows a Maxwell-Boltzmann distribution
What does the area under the curve represent?

A Total energy of particles \square
B Total number of particles

C Number of particles that can react \square

D The total number particles that have the activation energy \square

The apparatus in Figure 2 was set up to measure the time taken for $20.0 \mathrm{~cm}^{3}$ of sodium thiosulfate solution to react with $5.0 \mathrm{~cm}^{3}$ of hydrochloric acid in a $100 \mathrm{~cm}^{3}$ conical flask at $20^{\circ} \mathrm{C}$. The timer was started when the sodium thiosulfate solution was added to the acid in the flask. The timer was stopped when it was no longer possible to see the cross on the paper.

Figure 2

| $\mathbf{0}$ | $\mathbf{7} \quad$ What is likely to decrease the accuracy of the experiment? |
| :--- | :--- | :--- |

A Rinsing the flask with acid before each new experiment.
B Stirring the solution throughout each experiment.
C Using the same piece of paper for each experiment.
D Using different measuring cylinders to measure the volumes

| 0 | 8 |
| :--- | :--- |\quad The experiment was repeated at $20^{\circ} \mathrm{C}$ using a $250 \mathrm{~cm}^{3}$ conical flask.

Which statement is correct about the time taken for the cross to disappear when using the larger conical flask?
[1 mark]
A The time taken will not be affected by using the larger conical flask. \square
B The time taken will be decreased by using the larger conical flask. \square

C The time taken will be increased by using the larger conical flask. \square

D It is impossible to predict how the time taken will be affected by using the larger conical flask.

| $\mathbf{0}$ | $\mathbf{9}$ Which change requires the largest amount of energy? |
| :--- | :--- | :--- |

A $\mathrm{He}^{+}(\mathrm{g}) \longrightarrow \mathrm{He}^{2+}(\mathrm{g})+\mathrm{e}^{-}$

B $\mathrm{Li}(\mathrm{g}) \longrightarrow \mathrm{Li}^{+}(\mathrm{g})+\mathrm{e}^{-}$ \square
C $\quad \mathrm{Mg}^{+}(\mathrm{g}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{-}$

D $\quad \mathrm{N}(\mathrm{g}) \quad \longrightarrow \mathrm{N}^{+}(\mathrm{g})+\mathrm{e}^{-}$ \square

What is the temperature of the gas?
The gas constant is $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

A $\quad 167 \mathrm{~K}$ \square
B $\quad 334 \mathrm{~K}$
C $\quad 668 \mathrm{~K}$ \square
D $\quad 334000 \mathrm{~K}$

An ester is hydrolysed as shown by the following equation.

$$
\mathrm{RCOOR}^{\prime}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{RCOOH}+\mathrm{R}^{\prime} \mathrm{OH}
$$

What is the percentage yield of RCOOH when 0.50 g of $\mathrm{RCOOH}\left(M_{\mathrm{r}}=100\right)$ is obtained from 1.0 g of $\operatorname{RCOOR}^{\prime}\left(M_{\mathrm{r}}=150\right)$?

A	33%	O
B	50%	O
C	67%	O
D	75%	O

| 1 | 2 |
| :--- | :--- | A saturated aqueous solution of magnesium hydroxide contains $1.17 \times 10^{-3} \mathrm{~g}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ in $100 \mathrm{~cm}^{3}$ of solution. In this solution, the magnesium hydroxide is fully dissociated into ions.

What is the concentration of $\mathrm{Mg}^{2+}(\mathrm{aq})$ ions in this solution?

A $\quad 2.82 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ \square
B $\quad 2.01 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
C $\quad 2.82 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ 0

D $\quad 2.01 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ \square

Turn over for the next question

1	3	The rate equation for the hydrogenation of ethene

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

is Rate $=k\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{H}_{2}\right]$
At a fixed temperature, the reaction mixture is compressed to triple the original pressure.

What is the factor by which the rate of reaction changes?

A 6
B $9 \quad 0$
C $\quad 12$

D $\quad 27$ \square

14
When one mole of ammonia is heated to a given temperature, 50% of the compound dissociates and the following equilibrium is established.

$$
\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons{ }_{2}^{1} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})
$$

What is the total number of moles of gas present in this equilibrium mixture?

A $\quad 1.5$ \square
B 2.0
$\begin{array}{ll}\text { C } & 2.5\end{array}$
D $\quad 3.0$

| 1 | 5 |
| :--- | :--- |\quad What is the pH of a $0.020 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a diprotic acid which is completely dissociated?

A $\quad 1.00$ \square
B $\quad 1.40$ \square
C $\quad 1.70$ \square
D $\quad 4.00$

| 1 | 6 |
| :--- | :--- |\quad The acid dissociation constant, K_{a}, of a weak acid HA has the value $2.56 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$

What is the pH of a $4.25 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HA?

A 5.96
B $\quad 3.59$
C 2.98

D $\quad 2.37$

1	$\mathbf{7}$	Magnesium reacts with hydrochloric acid according to the following equation.

$$
\mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

A student calculated the minimum volume of $2.56 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid required to react with an excess of magnesium to form 5.46 g of magnesium chloride ($M_{r}=95.3$).

Which of the following uses the correct standard form and the appropriate number of significant figures to give the correct result of the calculation?

A $\quad 4.476 \times 10^{-2} \mathrm{dm}^{3}$
B $\quad 4.48 \times 10^{-2} \mathrm{dm}^{3}$
C $\quad 4.50 \times 10^{-2} \mathrm{dm}^{3}$
D $\quad 44.8 \times 10^{-3} \mathrm{dm}^{3}$ \square

1	8	In which reaction is hydrogen acting as an oxidising agent?

[1 mark]

A $\mathrm{Cl}_{2}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{HCl}$
B $\quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}+\mathrm{H}_{2} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ \square
C $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$
D $2 \mathrm{Na}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{NaH}$

In which reaction is the metal oxidised?
[1 mark]
A $2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \longrightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$

B $\quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{Cl}^{-} \longrightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{Cl})\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$
C $\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-}$

D $\mathrm{Mg}+\mathrm{S} \longrightarrow \mathrm{MgS}$

| $\mathbf{2}$ | $\mathbf{0}$ |
| :--- | :--- | The following cell has an EMF of +0.46 V .

$$
\mathrm{Cu}\left|\mathrm{Cu}^{2+}\right|\left|\mathrm{Ag}^{+}\right| \mathrm{Ag}
$$

Which statement is correct about the operation of the cell?

A Metallic copper is oxidised by Ag^{+}ions.
B The silver electrode has a negative polarity.
C The silver electrode gradually dissolves to form Ag^{+}ions.
D Electrons flow from the silver electrode to the copper electrode \square via an external circuit.

In an experiment to identify a Group 2 metal (X), 0.102 g of X reacts with an excess of aqueous hydrochloric acid according to the following equation.

$$
\mathrm{X}+2 \mathrm{HCl} \longrightarrow \mathrm{XCl}_{2}+\mathrm{H}_{2}
$$

The volume of hydrogen gas given off is $65 \mathrm{~cm}^{3}$ at 99 kPa pressure and 303 K . The gas constant is $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

Which is X ?

A Barium

B Calcium

C Magnesium
D Strontium

| 2 | 2 |
| :--- | :--- | What forms when a solution of sodium carbonate is added to a solution of gallium(III) nitrate?

A A white precipitate of gallium(III) carbonate.
B A white precipitate of gallium(III) hydroxide.
C A white precipitate of gallium(III) carbonate and bubbles of carbon dioxide.

D A white precipitate of gallium(III) hydroxide and bubbles of carbon dioxide.

| 2 | 3 |
| :--- | :--- | Which compound gives a colourless solution when an excess of dilute aqueous ammonia is added?

A FeCl_{2} \square
B AgCl

C CuCl_{2}

D AlCl_{3}

| 2 | 4 | What is the final species produced when an excess of aqueous ammonia is added |
| :--- | :--- | :--- | to aqueous aluminium chloride?

A $\quad\left[\mathrm{Al}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ \square
B $\quad\left[\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$ 0

C $\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-} \quad \mathrm{O}$
D $\quad\left[\mathrm{Al}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ 0

| 2 | 5 |
| :--- | :--- |\quad The following equation represents the oxidation of vanadium(IV) ions by manganate(VII) ions in acid solution.

$$
5 \mathrm{~V}^{4+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow 5 \mathrm{~V}^{5+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

What volume of $0.020 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$ solution is required to oxidise completely a solution containing 0.010 mol of vanadium(IV) ions?
[1 mark]
A $\quad 10 \mathrm{~cm}^{3}$
B $\quad 25 \mathrm{~cm}^{3}$
C $\quad 50 \mathrm{~cm}^{3}$
D $\quad 100 \mathrm{~cm}^{3}$ \square

26 How many structural isomers have the molecular formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$?

A 2

B 3
C 4 \square
D 5 \square
What is the major product of the reaction between but-1-ene and DBr ?
(D is deuterium and represents ${ }^{2} \mathrm{H}$)

A $\mathrm{CH}_{2} \mathrm{DCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ \square
B $\mathrm{CH}_{2} \mathrm{DCH}_{2} \mathrm{CHBrCH}_{3}$ \square
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{D}$
D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHDCH}_{2} \mathrm{Br}$ \square

| 2 | 8 |
| :--- | :--- | Which alcohol could not be produced by the reduction of an aldehyde or a ketone?

[1 mark]
A 2-methylbutan-1-ol
B 2-methylbutan-2-ol

C 3-methylbutan-1-ol

D 3-methylbutan-2-ol

$\mathbf{3}$	$\mathbf{2}$ Which amine has only three peaks in its proton NMR spectrum?

A Methylamine \square
B Trimethylamine \square
C Diethylamine \square
D Propylamine \square

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2015 Oxford International AQA Examinations and its licensors. All rights reserved.

[^0]: Candidate signature

