

OXFORD AQA INTERNATIONAL A-LEVEL CHEMISTRY

(9620)

PAPER 3

Specimen 2018	Morning	Time allowed: 1 hour 30 minutes
Materials For this paper you must have: • a pencil • a ruler • a calculator • a data booklet		
Instructionsuse black ink or ball-point pen		

- answer all questions
- show all your working.

Information

- The marks for questions are shown in brackets
- The maximum mark for this paper is 80 marks

Please write clearly, in block capitals, to allow character computer recognition.					
Centre number					
Surname					
Forename(s)					
Candidate signature					

Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.

a	ffinity of fluorine.	[1 mark
) 2 . 2	In terms of electrostatic forces, suggest why the electron affinity of fine negative value.	luorine has a [2 marks
2.3	Complete the Born–Haber cycle for silver fluoride by adding the mis	sing species of
	the dotted lines.	[3 marks
	Ag*(g) +	
	Ag^*(g) + Ag^*(g) + F^(g)	
	Ag(g) +	
	Ag(s) +	
	AgF(s)	

Г

 Table 1 shows some enthalpy data.

Enthalpy change	Value / kJ mol ⁻¹
Enthalpy of atomisation for silver	+ 289
First ionisation energy for silver	+ 732
Electron affinity for fluorine	- 348
Experimental enthalpy of lattice dissociation for silver fluoride	+ 955
Enthalpy of formation for silver fluoride	- 203
Enthalpy of hydration for Ag ⁺	- 464
Enthalpy of hydration for F ⁻	- 506
Enthalpy of hydration for CI ⁻	- 364
 Bond enthalpy =	kJ mol [_]
Bond enthalpy =	kJ mol [_]
Bond enthalpy =	kJ mol [_]
Bond enthalpy =	kJ mol [_]
Bond enthalpy =	kJ mol [_]

0 2.5	Use data from Table 1 to calculate a value for the enthalpy of hydration silver fluoride	n of
	[2 marks]
	Enthalpy of hydration =	kJ mol ^{–1}
02.6	Use data from Table 1 to explain why the value for the enthalpy of hydres the fluoride ion is more perative than that for the chloride ion	ration of
	ine nuonde for is more negative than that for the chlonde for.	2 marks]

03.3	Explain why the ma	agnitude of ΔG decr	eases as <i>T</i> increase	s in this reaction.
				[1 mark]
	The following rea	ction becomes fea	sible at temperatu	res above 5110 K
	The following rea	$H_0(a) \longrightarrow H_0$	$(a) + \frac{1}{2} O_{a}(a)$	
T	The entronies of the	species involved	are shown in Tabl	e 2
	1	Table	2	г
		H ₂ O(g)	H ₂ (g)	O ₂ (g)
	S / J K ⁻¹ mol ⁻¹	189	131	205
03.5	Calculate a value, v (If you have been u the entropy change	with units, for the er unable to answer pa e is +98 J K ⁻¹ mol ⁻¹ .	thalpy change for th rt 3.3, you may assu This is not the corre	is reaction at 5440 K. Ime that the value of ct value.)
				[2 marks]

04.1	A 25.0 cm ³ sample of 0.0850 mol dm ^{-3} hydrochloric acid was placed beaker. Distilled water was added until the pH of the solution was 1.25.	d in a
	Calculate the total volume of the solution formed. State the units.	[3 marks]
	[Extra Space]	
	At 298 K, the value of the acid dissociation constant (K_a) for the weak acid aqueous solution is 3.01 × 10 ⁻⁵ mol dm ⁻³ .	l HX in
04.2	Write an expression for the acid dissociation constant (\mathcal{K}_a) for the weak as	cid HX. [1 mark]
04.3	Calculate the pH of a 0.174 mol dm ^{-3} solution of HX at this temperature. Give your answer to 2 decimal places.	[3 marks]
	[Extra Space]	

Γ

04.4	An acidic buffer solution is formed when 10.0 cm ³ of 0.125 mol dm ⁻³ aqueous sodium hydroxide are added to 15.0 cm ³ of 0.174 mol dm ⁻³ aqueous HX. The value of K _a for the weak acid HX is 3.01 × 10 ⁻⁵ mol dm ⁻³ .
	Calculate the pH of this buffer solution at 298 K. Give your answer to 2 decimal places.
	[Extra Space]

Г

5	There is a link be structure and bor 3 elements.	tween the propertion iding. Table 3 show	es of the oxides of vs the melting poi	the Period 3 element nts of the oxides of so	ts and their ome Period
			Table 3		
		Na ₂ O	SiO ₂	P ₄ O ₁₀	
	T _m /K	1548	1883	573	
05.1	In terms of crystal points of sodium of phosphorus(V) ox	l structure and bon oxide and silicon di kide is low.	ding, explain in ea oxide are high, bu	ich case why the melt it the melting point of	ing [6 marks]
0 5.2	Write an equati	on for the reactio	n of phosphorus	(V) oxide with water	[1 mark]

6

Table 4 shows observations of changes from some test-tube reactions of aqueoussolutions of compounds Q, R and S with five different aqueous reagents.

The initial colours of the solutions are not given.

		Tak	ole 4		
	BaCl ₂ + HCl	AgNO ₃ + HNO ₃	NaOH	Na ₂ CO ₃	HCI (conc)
Q	No visible change	Yellow precipitate	Pale green precipitate that darkens on standing	Pale green precipitate	No visible change
R	White precipit ate	No visible change	White precipitate that dissolves in excess sodium hydroxide	White precipitate and bubbles of gas	No visible change
S	No visible change	White precipitate	Brown precipitate	Brown precipitate and bubbles of gas	Yellow solution
	Identity of Q				[6 mark
	Identity of Q				
	Identity of S				

06.2	Write ionic equations for each of the positive observations with S.	[4 marks]
	Turn over for next question	

7	This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.		
-	Excited state		
-	$\Delta E = 2.84 \times 10^{-19} \text{J}$ Ground state		
07.1	Give the equation that relates the energy change ΔE to the Planck constant h and the frequency of the visible light v.		
	Use this equation and the information in the diagram to calculate a value for the frequency of the visible light, and state the units. The Planck constant $h = 6.63 \times 10^{-34} \text{ J s.}$		
	[2 marks]		
	Equation		
	Calculation		
07.2	Explain why this electron transition causes a solution containing the transition metal ion to be coloured.		
	[z marks]		

Г

07.3	The energy change shown in the diagram represents the energy of red light and leads to a solution that appears blue. Blue light has a higher frequency than red light.
	Suggest whether the energy change ΔE will be bigger, smaller or the same for a
	transition metal ion that forms a red solution. Explain your answer. [2 marks]
	Energy of change
	Explanation
07.4	State three different features of transition metal complexes that cause a change in the value of ΔE , the energy change between the ground state and the excited state of the d electrons.
	[3 marks]
	Feature 1
	Feature 2
	Feature 3
	Turn over for next question
L	

This diagram represents the energy change that occurs when a d electron in a transit **Table 5** shows some standard electrode potential data.

Electrode half-equation	E ^e / V
$Au^{+}(aq) + e^{-} \longrightarrow Au(s)$	+1.68
$\frac{1}{2} O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O(I)$	+1.23
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.77
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.34
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44

0 8 . **1** Draw a labelled diagram of the apparatus that could be connected to a standard hydrogen electrode in order to measure the standard electrode potential of the Fe^{3+} / Fe^{2+} electrode.

In your diagram, show how this electrode is connected to the standard hydrogen electrode and to a voltmeter. Do **not** draw the standard hydrogen electrode.

State the conditions under which this cell should be operated in order to measure the standard electrode potential.

[5 marks]

Conditions

8

08.2	Use data from the table to deduce the equation for the overall cell reaction cell that has an e.m.f. of 0.78 V Give the conventional cell representation for this cell. Identify the positive electrode	of a [4 marks]
08.3	Use data from the table to explain why Au ⁺ ions are not normally found in aqueous solution Write an equation to show how Au ⁺ ions would react with water.	[3 marks]

09.1	Explain how the electron pair repulsion theory can be used to deduce the sl and the bond angle in, ${\sf PF}_3$	hape of, [5 marks]
	END OF QUESTIONS	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.