OXFORD AQA INTERNATIONAL A-LEVEL CHEMISTRY
 (9620)

PAPER 4

Specimen 2018

Morning Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data booklet

Instructions

- use black ink or ball-point pen
- answer all questions
- show all your working.

Information

- The marks for questions are shown in brackets
- The maximum mark for this paper is 80 marks

Answer all questions in the spaces provided.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ The data in Table 1 were obtained in two experiments about the rate of the |
| :--- | :--- | :--- | reaction between substances \mathbf{A} and \mathbf{B} at a constant temperature.

Table 1

Experiment	Initial concentration of $\mathbf{A} / \mathrm{mol} \mathrm{dm}^{-3}$	Initial concentration of $\mathbf{B} / \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $/ \mathrm{mol}$ $\mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	3.4×10^{-2}	4.6×10^{-2}	9.5×10^{-5}
2	6.8×10^{-2}	7.6×10^{-2}	To be calculated

The rate equation for this reaction is known to be

$$
\text { rate }=k[\mathbf{A}][\mathbf{B}]^{2}
$$

Use the data from Experiment 1 to calculate a value for the rate constant k at this temperature and deduce its units.

Calculation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Units \qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1} .2$ | 2 |
| :--- | :--- | :--- | reaction between substances \mathbf{C} and \mathbf{D} at a constant temperature.

Table 2

Experiment	Initial concentration of \mathbf{C} $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial concentration of $\mathbf{D} / \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $/ \mathrm{mol}$ $\mathrm{dm}^{-3} \mathrm{~s}^{-1}$
3	0.17	0.24	0.23×10^{-3}
4	0.51	0.24	2.07×10^{-3}
5	1.02	0.48	8.28×10^{-3}

Deduce the order of reaction with respect to \mathbf{C}.
Tick (\checkmark) one box.

First

Second \square

Tick (\checkmark) one box.

Zero \square

First \square

Second \square

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{4}$	A reaction has a rate constant $\mathrm{k}=1.84 \times 10^{-4} \mathrm{~s}^{-1}$ at 750 K.

Use the Arrhenius equation, $\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$, to calculate a value in $\mathrm{kJ} \mathrm{mol}^{-1}$ for the activation energy of this reaction.

The Arrhenius constant, $\mathrm{A}=1.94 \times 10^{15} \mathrm{~s}^{-1}$
The gas constant, $\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1} .5$ | $\mathbf{5}$ The compound $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ reacts with aqueous sodium hydroxide as shown in the |
| :--- | :--- | :--- | following equation.

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{OH}^{-} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Br}^{-}
$$

This reaction was found to be first order with respect to $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ but zero order with respect to hydroxide ions.

The following two-step process was suggested.

Step 1	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Br}^{-}$
Step 2	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{OH}^{-} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$

Explain how the rate data helps to support the suggested mechanism
\qquad
\qquad
\qquad

0	$\mathbf{1}$	6	
6	Outline a mechanism for Step 1 using a curly arrow.		

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{7}$ | Suggest how the rate of the reaction between $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ would compare with the |
| :--- | :--- | :--- | :--- | rate of the reaction in Question 01.6. Explain your answer.

\qquad
\qquad

Name and outline a mechanism for the reaction of $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ with HCN
[5 marks]
Name of mechanism
Mechanism

$\mathbf{0}$	$\mathbf{2} .2$
2	

Draw the structure of each enantiomer to show clearly how they are related to each other.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{3}$ State and explain how you could distinguish between the two enantiomers.

[2 marks]
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$. 4 Acrylic fibres are used as a substitute for wool. Acrylics are copolymers of |
| :--- | :--- | :--- | :--- | acrylonitrile with other compounds.

Acrylonitrile is the common name for the following compound.

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{~N}
$$

Acrylonitrile can be formed from propene.

The term copolymer is used to describe the product obtained when two or more different monomers form a polymer.

Draw the repeating unit of the acrylic copolymer that contains 75\% acrylonitrile monomer and 25% propene monomer.

3 5-amino-2-methylbenzenesulphonic acid can be prepared from methylbenzene in a three-step synthesis:

| $\mathbf{0}$ | $\mathbf{3} . \mathbf{1} \quad$ State the type of reaction taking place in Step 1 and give suitable reagent(s) for this |
| :--- | :--- | :--- | step.

[3 marks]
Type of Reaction \qquad
Reagent(s) \qquad

| $\mathbf{0}$ | $\mathbf{3} \cdot \mathbf{2}$ Write an equation for the formation of the reactive inorganic species involved in the |
| :--- | :--- | :--- | mechanism for Step 1.

\qquad

| $\mathbf{0}$ | $\mathbf{3} \cdot \mathbf{3}$ Identify the reactive inorganic species involved in the mechanism in Step 2 and |
| :--- | :--- | :--- | :--- | outline the mechanism.

Reactive species \qquad
Mechanism

| $\mathbf{0}$ | $\mathbf{3} \cdot \mathbf{4} \quad \mathrm{LiAlH}_{4}$ can be used as the reagent for Step 3. |
| :--- | :--- | :--- |

Write an equation for this reaction.
You should use $[\mathrm{H}]$ to represent the reducing agent in your equation.

Equation

| $\mathbf{0}$ | $\mathbf{3} .5$ Explain why ethylamine $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ is a stronger base than |
| :--- | :--- | 5-amino-2-methylbenzenesulphonic acid.

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{1}$ The amide or peptide link is found in synthetic polyamides and also in |
| :--- | :--- | :--- | naturally-occurring proteins.

Draw the repeating unit of the polyamide formed by the reaction of butanedioic acid with hexane-1,6-diamine.

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{2}$ In terms of the intermolecular forces between the polymer chains, explain why |
| :--- | :--- | :--- | polyamides can be made into fibres suitable for use in sewing and weaving, whereas polyalkenes usually produce fibres that are too weak for this purpose.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 4 | 3 | | 3 |
| :--- | :--- | :--- | :--- | :--- | name of the product containing an amide linkage that is formed in this reaction

| $\mathbf{0}$ | 5 | $\mathbf{1}$ A bottle was discovered that was labelled propan-2-ol. A chemist showed, using |
| :--- | :--- | :--- | infrared spectroscopy, that the propan-2-ol was contaminated with propanone. The chemist separated the two compounds using column chromatography. The column contained silica gel, a polar stationary phase.

The contaminated propan-2-ol was dissolved in hexane and poured into the column. Pure hexane was added slowly to the top of the column. Samples of the eluent (the solution leaving the bottom of the column) were collected.

- Suggest the chemical process that would cause a sample of propan-2-ol to become contaminated with propanone.
- Explain how the infrared spectrum showed the presence of propanone.
- Suggest why propanone was present in samples of the eluent collected first (those with shorter retention times), whereas samples containing propan-2-ol were collected later.
\qquad

| 0 | 6 | 1 |
| :--- | :--- | :--- | The amine $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ can be prepared by two different routes.

Route A is a two-stage process and starts from $\mathrm{CH}_{3} \mathrm{Br}$
Route \mathbf{B} is a one-stage process and starts from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
[7 marks]
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$ This question is about three esters $\mathrm{H}, \mathrm{I}, \mathrm{J}$.

Compound \mathbf{H} is a cyclic ester that can be prepared as shown.
On the structure of \mathbf{H}, two of the carbon atoms are labelled.

Name and outline a mechanism for this reaction.
Use Table C on the Data Sheet to give the ${ }^{13} \mathrm{C}$ n.m.r. ∂ (chemical shift) \square value for the carbon atom labelled \mathbf{a} and the ∂ value for the carbon atom labelled \mathbf{b}.
[7 marks]
\qquad

Ester I

Ester J

One of the two esters produced this spectrum.

Deduce which of the two esters produced the spectrum shown. In your answer, explain the position and splitting of the quartet peak at $\delta=4.1 \mathrm{ppm}$ in the spectrum.

Predict the δ value of the quartet peak in the spectrum of the other ester.
Use Table B on the Data Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{8}$ | $\mathbf{1}$ | A chemist discovered four unlabelled bottles of liquid, each of which contained a |
| :--- | :--- | :--- | :--- | :--- | different pure organic compound. The compounds were known to be propan-2-ol, propanal, propanoic acid and 1-chloropropane.

Describe four different test-tube reactions, one for each compound, that could be used to identify the four organic compounds.
Your answer should include the name of the organic compound, the reagent(s) used and the expected observation for each test.
\qquad

The tripeptide shown in Figure 4 is formed from the amino acids glycine, threonine and lysine.
Figure 4

0	9	1
Draw a separate circle around each of the asymmetric carbon atoms in the tripeptide		

[1 mark]

0	9	2

| 0 | $\mathbf{9} .3$ |
| :--- | :--- | bromomethane.

0	9	4

| $\mathbf{0}$ | $\mathbf{9}$. | $\mathbf{5}$ Draw the structure of the species formed by lysine at low pH . |
| :--- | :--- | :--- | :--- |

