

INTERNATIONAL A-LEVEL PHYSICS

(9630)

PAPER 2

Specimen 2018

Morning

Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formula booklet.

Instructions

- use black ink or ball-point pen
- answer **all** questions
- show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 marks.

Please write clearly in block capital	S.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

01.2	Calculate the critical angle for the boundary between the core and ${f X}$. [2 marks]
01.3	angle = degrees The ray leaves the core at Y . At this point the fibre has been bent through an angle of 30° as shown in Figure 1 . Calculate the value of angle <i>i</i> . [1 mark]
02.1	angle = degrees A metal wire of length 1.4 m has a uniform cross-sectional area of $7.8 \times 10^{-7} \text{ m}^2$. Calculate the resistance, <i>R</i> , of the wire. Resistivity of the metal = $1.7 \times 10^{-8} \Omega \text{ m}$ [2 marks]
02.2	resistance =Ω The wire is now stretched to twice its original length by a process that keeps its volume constant. The resistivity of the metal of the wire remains constant. Show that the resistance increases to 4 <i>R</i> . [2 marks]

0 3 Figure 2 shows the lowest three energy levels of a hydrogen atom. Figure 2 energy/eV *n* = 3 _____ -1.51 *n* = 2 ______ -3.41 *n* = 1 ______ -13.6 An electron is incident on a hydrogen atom. As a result an electron in the ground state of the hydrogen atom is excited to the n = 2 energy level. The atom then emits a photon of a characteristic frequency. Explain how the electron in the ground state becomes excited to the n = 2 energy level. [2 marks] 0 4 A battery in a laptop computer has an electromotive force (emf) of 14.8 V and can store a maximum charge of 15.5×10^3 C. The battery has negligible internal resistance. Calculate the maximum amount of energy this battery can deliver. [2 marks] J maximum energy = _____

07.3	Calculate the path difference between the two waves arriving at the detector. Use the information on Figure 6 and your answer to 7.2 . [1 mark]
	path difference = m
07.4	Explain whether a maximum or minimum is detected at the position shown in Figure 6 . [3 marks]
07.5	The experiment is now rearranged so that the perpendicular distance from the slits to the detector is 0.42 m. The interference fringe spacing changes to 0.11 m. Calculate the slit separation. Give your answer to an appropriate number of significant figures. [3 marks]
	slit separation =m
07.6	With the detector at the position of a maximum, the frequency of the microwaves is now doubled.
	Explain what would now be detected by the detector in the same position. [2 marks]

Г

V1.1 Copyright $\textcircled{\mbox{\scriptsize C}}$ 2017 Oxford International AQA Examinations and its licensors. All rights reserved.

	Comple positior	ete Table 1 indicating the read	ding of the voltmeter at e	each of the three
	•	Table	9 1	[3 marks
	Г	Voltmeter position	pd / V	7
	-	A–C	pu / /	-
	-	D–F		_
	-	C–D		-
8.4		ermistor is heated so that its rond explain the effect this has ns.		g in the following [4 marks
				[4 marks
	A–C			
	D–F			
		Turn over for the	next question	
		Turn over for the	next question	
		Turn over for the	next question	
		Turn over for the	next question	
		Turn over for the	next question	

09	Experiments based on the photoelectric effect support the particle nature In such experiments, light is directed at a metal surface. A threshold frec this light occurs. Below this frequency, no photoelectric effect is observe	uency for
09.1	Explain why the photoelectric effect is not observed below the threshold frequency.	[2 marks]
	Monochromatic light of wavelength 5.40 × 10^{-7} m is incident on a metal s which has a work function of 1.40 × 10^{-19} J.	urface
	Calculate the energy of a single photon of this light.	[2 marks]
	energy =	J
09.3	Calculate the maximum kinetic energy of an electron emitted from the su	rface. [1 mark]
	energy =	J
09.4	Calculate the maximum speed of the emitted electron.	[2 marks]
	maximum speed =	m s ⁻¹

09.5	Calculate the de Broglie wavelength of the fastest electrons.	[2 marks]
	wavelength =	m
09.6	The intensity of light incident on the metal is increased without changing frequency.	the
	Describe and explain the change which takes place.	[2 marks]
	Turn over for the next question	

10.1	Determine the emf ε of the cell using Figure 9. [1 mark]
10.2	emf of cell =V Determine the internal resistance r of the cell by using Figure 9 . [3 marks]
10.3	internal resistance =Ω Another student checks the emf of the cell by disconnecting the cell from the circuit and connecting a voltmeter across it. The voltmeter used has a low resistance. State and explain how this value compares with the value determined in 10.1. [2 marks]
	Turn over for the next question

1 1	Read through the following information and answer the questions that follow.
	Measuring the speed of sound in air
1 5	Sound travels as a longitudinal wave. The first attempt to measure its speed in air was made by the scientist Gassendi. The procedure involved timing the interval between seeing the flash of a gun and hearing the bang from some distance away. Gassendi assumed that the speed of light is infinite compared to the speed of sound. The value he obtained for the speed of sound was 480 m s ⁻¹ . He also realised that the speed of sound does not depend on frequency.
	Suggest an experiment that will demonstrate the wave nature of sound (line 1). [1 mark]
11.2	Using Gassendi's value for the speed of sound (line 5), calculate the time between seeing the flash of a gun and hearing its bang over a distance of 2.5 km. [1 mark]
1 1 . 3	time =s Explain why it was necessary to assume that 'the speed of light is infinite' (line 4). [1 mark]

	Read through the following information and answer the questions that follow.
1	Using the same method as Gassendi, a much better value of 350 ${ m m~s}^{-1}$ was
	obtained by the Italian physicists Borelli and Viviani. In 1740 another Italian,
	Bianconi, showed that sound travels faster when the temperature of the air is
	greater. In 1738 a value of 332 $\mathrm{m~s}^{-1}$ was obtained by scientists in Paris. This is
	very close to the currently accepted value considering the measuring equipment
5	available to the scientists at that time. Since 1986 the accepted value has been
	331.29 m s ^{-1} at 0 °C.
1 1 . 5	Explain how the value obtained by Borelli and Viviani was 'much better' than that
	obtained by Gassendi (line 1). [1 mark]
1 1 . 6	The speed of sound c in dry air is given by
	$c = k\sqrt{(\theta + 273.15)}$
	where θ is the temperature in °C, and k is a constant.
	Calculate a value for k using data from the passage.
	[2 marks]
	k = m s ⁻¹ K ^{-1/2}
1 1 . 7	State the steps taken by the scientific community for the value of a quantity to be
	'accepted' (line 5). [2 marks]

Each of the	e questi		Section C tion is followed by four responses, A, B, C, and D. For estion select the best response.	each
Only one a	nswer p	er question is	allowed.	
For each a	nswer c	ompletely fill in	the circle alongside the appropriate answer.	
CORRECT MET		WRONG METH		
If you want	to chan	ge your answe	er you must cross out your original answer as shown. 🗋	\mathbf{X}
lf you wish select as sl		n to an answer	previously crossed out, ring the answer you now wish	to
12	The d	istance betwee	gressive wave are one-eighth of a wavelength apart. In them is 0.5 ${\rm m}$, and the frequency of the oscillation is n speed of the wave?	10 Hz.
			[1 mark]
	Α	0.2 m s^{-1}	0	
	в	10 m s^{-1}	0	
	С	20 m s^{-1}	0	
	D	40 m s ⁻¹	0	
1 3	Which	of the followin	g waves cannot be polarised? ['	1 mark]
	Α	microwave	0	
	В	radio	0	
	С	ultrasonic	0	
	D	ultraviolet	0	

1 5	Monochromatic light of wavelength 590 nm is incident normally on a plane diffraction grating having 4×10^5 lines m ⁻¹ . An interference pattern is produced. What is the highest order visible in this interference pattern?				
					[1 mark]
	Α	2			
	В	3			
	С	4			
	D	5			
1 6	the wa	aves in X is 400 Hz. 1	dary between two means for the speed of the wave s^{-1} . What are the cor	es in ${ m X}$ is 330 ${ m ms}^{-1}$ an	d the speed
		Frequency / Hz	Wavelength / ${ m m}$		
	Α	100	0.825	0	
	В	400	0.825	0	
	С	400	3.30	0	
	D	1600	3.30	0	
1 7	Which of the following is correct for a stationary wave? [1] A Between two nodes the amplitude of the wave is constant. • B The two waves producing the stationary wave must always be 180° out of phase. •				[1 mark]
	C D	The separation of the harmonic is double for the first harmonic between two nodes vibrate in phase.			
	D Between two nodes all parts of the wave vibrate in phase.				

