OXFORD AQA INTERNATIONAL A-LEVEL PHYSICS

(9630)

PAPER 4

Specimen 2019

Morning

Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formula booklet.

Instructions

- use black ink or ball-point pen
- answer all questions
- show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 marks.

Please write clearly in block capitals.
Centre number
Surname
Forename(s)
Candidate signature

		Section	Δ			
Answer all questions in this section.						
01	Table 1 gives the surface areas and U-values for the external parts of a house before and after additional insulation has been added.Table 1					
	part of house	walls	doors	windows	roof	
	area / m²	90	4	16	70	
	<i>U</i> -value with standard insulation / $W m^{-2} K^{-1}$	1.0	2.4	5.0	0.6	
	$\textit{U}\xspace$ -value with additional insulation / W ${\rm m}^{-2}~{\rm K}^{-1}$	0.6	2.4	2.9	0.3	
01.1	A house has standard ins temperature inside the ho Calculate the total rate of	use is 23 °C	C and the te	mperature ou		
			rate of hea	at transfer = _		W
01.2	An example of induced fis	ssion is sho	wn below.			
	²³⁵ ₉₂ U +n −	→ ⁹⁰ ₃₈ Sr	+	Xe + 2	2n	
	Complete the equation.					[2 marks]

01.3	Each fission reaction transforms 200 MeV of energy into useful forms. A reactor produces 600 MW.
	Calculate, in g s ⁻¹ , the rate of use of uranium-235 [3 marks
	rate of use of uranium-235 =g s⁻
01.4	Determine which single part of the house should be insulated to give the best reduction in the rate of heat transfer. Use the data from Table 1 . Justify your answer. [3 marks

Γ

Explain the purpose of control rods and why boron is a suitable ruse.	
	[3 marks

02	Figure 1 shows an idea for a future space station. The station rotates about its axis to simulate gravity in its outer section.
	direction of rotation
02.1	The space station has a moment of inertia of $5.2 \times 10^{10} \text{ kg m}^2$. It is accelerated from rest with a torque of $4.4 \times 10^4 \text{ N m}$ for 3.0 days.
	Show that angular speed of the space station is approximately 0.22 rad s ⁻¹ . [3 marks]
02.2	Calculate the work done accelerating the space station from rest to an angular velocity of 0.22 rad s^{-1} .
	[1 mark]
	work done = J

03.1	A conventional pump storage system has a power output of 8.0×10^7 W. The height difference between its reservoir and its turbine is 610 m. The generation process is 95% efficient.
	Calculate the mass of water passing through the turbine each second. [4 marks]
	mass per second = kg
03.2	The annual output of electrical energy is 180 GW h.
	Show that the average time for which the power station operates is approximately 6 hours per day.
	[3 marks]
03.3	Identify one advantage of using a pump storage system to generate electricity. [1 mark]

Γ

04	The volume of air in a fully expanded human lung is $2.5 \times 10^{-3} \text{ m}^3$. The pressure of the air in the lung is 1.0×10^5 Pa and its temperature is 37 °C.
04.1	Determine the number of moles of air in the lung. [2 marks]
	number of moles
04.2	Calculate the average kinetic energy of an air molecule in the lung. [2 marks]
	average kinetic energyJ
04.3	Air is a mixture of oxygen and nitrogen molecules. The mass of an oxygen molecule is greater than the mass of a nitrogen molecule.
	Explain the effect this has on the mean square speeds of the oxygen and nitrogen molecules in the lungs. [3 marks]

0 5	The mass of a nucleus ${}_{2}^{4}$ He is 4.00151 u. The mass of a proton is 1.00728 u and the mass of a neutron is 1.00867 u. 1 u = 1.661 × 10 ⁻²⁷ kg
05.1	Calculate the mass defect Δm of this nucleus in a.m.u. [3 marks]
05.2	$\label{eq:dm} \Delta m = __\$ Calculate the binding energy per nucleon of this nucleus. [2 marks]
	Binding energy per nucleon =
	Turn over for the next question

06	A student immerses a 2.0 kW electric heater in a beaker of water. The heater is switched on for 120 s. At this point the heater is switched off and immediately removed from the water. The data below was collected during the experiment. initial mass of beaker 25 g initial mass of beaker and water 750 g initial temperature of water 20 °C final temperature of water 95 °C
06.1	Calculate the specific heat capacity of water. Give an appropriate unit. [4 marks]
	Specific heat capacity Unit
06.2	State and explain two ways in which the student could improve the accuracy of the value obtained for the specific heat capacity. [4 marks]

0 7	The first law of thermodynamics can be represented by $\Delta U = Q + W$.
07.1	State and explain, with reference to the equation, two ways in which the internal energy of a gas can be decreased. [4 marks]
	A volume of 20 m ³ of exhaust gas from a diesel engine leaves the exhaust pipe at a pressure of 1.0×10^5 Pa. The gas is cooled by the surrounding atmosphere, which is also at a pressure of 1.0×10^5 Pa, and, as a result, the exhaust gas contracts to half its volume.
07.2	Calculate the work done by the atmosphere on the gas during this contraction. [1 mark]

08	This question is about the kinetic theory of gases. State two assumptions of the kinetic theory of gases. Assumption 1	[2 marks]
	Assumption 2	
08.2	Show that the mean kinetic energy of one molecule of an ideal gas at a temperature of 21 °C is about 6 × 10^{-21} J. Boltzmann constant = 1.4×10^{-23} J K ⁻¹	[2 marks]

Section B
Each of the questions in this section is followed by four responses, A , B , C , and D . For each question select the best response.
Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD WRONG METHODS 😵 💿 🚔 🔨
If you want to change your answer you must cross out your original answer as shown.
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.
0 9 A 60 g solid metal sample is heated by an electric heater. The heater operates at a voltage of 230 V and with a current of 1.0 A. The temperature of the sample changes as shown below:
$temperature / 1000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 000 \\ 100 \\ 120 \\ 140 \\ 160 \\ 180 \\ 200 \\ 200 \\ 2$
What is the specific latent heat of vaporisation of the metal? [1 mark]
A $\frac{1}{230}$ J kg ⁻¹
B $\frac{1}{23}$ J kg ⁻¹
C 230 J kg ⁻¹
D 230 x 10 ³ J kg ⁻¹

10	•	A gas molecule of mass m moving at velocity u collides at right angles with the side of a container and rebounds elastically.					
		ch of the following statements concerning the motion of the molecule					
	mco	rrect?	[1 mark]				
			_				
	Α	The magnitude of the change in momentum of the molecule is zero.					
	В	The magnitude of the change in momentum of the molecule is \bigcirc $2mu$.					
	С	The force exerted by the molecule on the side of the container is equal to the force exerted by the container on the molecule.					
	D	The change in kinetic energy of the molecule is zero.					
1 1	The mean kinetic energy of the molecules in a gas is:						
	A	directly proportional to the absolute temperature					
	В	directly proportional to the square root of temperature					
	С	independent of absolute temperature					
	D	inversely proportional to the absolute temperature					
12	heate highe temp	uid flows continuously through a chamber that contains an electric er. When the steady state is reached, the liquid leaving the chamber er temperature than the liquid entering the chamber. The difference is erature is ΔT					
	VVNIC	h of the following will increase ΔT with no other change?	[1 mark]				
	Α	Increasing the volume flow rate of the liquid	0				
	В	Changing the liquid to one with a lower specific heat capacity	0				
	С	Using a heating element with a higher resistance	0				
	D	Changing the liquid to one that has a higher density	0				

1 3 The temperature of a hot liquid in a container falls at a rate of 2 K per minute just before it begins to solidify. The temperature then remains steady for 20 minutes by which time all the liquid has all solidified. Assume the rate of heat loss remains constant throughout this process. What is the quantity Specific heat capacity of the liquid ? Specific latent heat of fusion [1 mark] $\textbf{A} \qquad \frac{1}{40} \, \textbf{K}^{-1}$ \bigcirc **B** $\frac{1}{10}$ K⁻¹ \bigcirc **C** 10 K^{-1} \bigcirc 40 K^{-1} \bigcirc D 1 4 A fixed mass of gas occupies a volume V. The temperature of the gas increases so that the root mean square velocity of the gas molecules is doubled. What will the new volume be if the pressure remains constant? [1 mark] $\frac{V}{2}$ \bigcirc Α $\frac{V}{\sqrt{2}}$ \bigcirc В С 2V \bigcirc D 4V \bigcirc

1 7	A perfect gas at 27 $^{\circ}$ C is heated at constant pressure so as to double its volume. What is the increase in temperature of the gas?			
	A	54 °C	0	[1 mark]
	в	300 °C	0	
	С	327 °C		
	D	600 °C		
	n mole	a of an ideal a	an in at procedure D	
1 8	<i>n</i> moles of an ideal gas is at pressure <i>P</i> . What is the pressure of 4 <i>n</i> moles of the same gas at three times the temperatu and half the volume? [1 m			
	А	P/6		
	В	6P		
	c	12P		
	D	24P		

A $\frac{2}{3}p$ \bigcirc B $\frac{5}{3}p$ \bigcirc C $\frac{4}{3}p$ \bigcirc D $\frac{3}{2}p$ \bigcirc

			_			
2 1	What is the mass defect of the $\frac{7}{3}$ Li nucleus?					
	Use the follow mass of a protonass of a neumass of a neumass of $\frac{7}{3}$ Li r	utron				[1 mark]
	A 0.93912	2 u	0			
	B 0.04051	1 u	0			
	C 0.04077	7 u	0			
	D 0.04216	δu	0			
2 2	One of the po	ssible ste	ps in the fusio	n of Helium ii	n the sun is show	vn below:
	$3 {}_{2}^{4}He \rightarrow {}_{6}^{12}C$ The mass of a Helium -4 nucleus is 4.001505 u The mass of a Carbon-12 nucleus is 12.000000 u					
	Calculate the	energy re	leased in this	process in Jo	ules.	[1 mark]
	A 6.73 ×	: 10 ⁻¹³ J	0			
	B 3.97 ×	:10 ⁻¹⁰ J	0			
	C 1.19 ×	:10 ⁻⁹ J	0			
	D 2.45 ×	:10 ⁻⁹ J	0			

A company makes small solar cells for use in toys. They make two types. Both are square and the sides of Type A are 4 times as long as those for Type B. The efficiency of both cells is the same. In a test, a Type A cell is positioned 20 cm from a light source.
 At what distance from the source will the Type B cell have the same output power? [1 mark]

Α	5 CM	0
в	10 cm	0
С	100 cm	0
D	160 cm	0

END OF QUESTIONS

