OXFORD

INTERNATIONAL AQA EXAMINATIONS

international AS AND A-LEVEL

 (9630)
 Data and formula booklet
 Insert

This booklet is provided with OxfordAQA International AS and A-level question papers v1.2

DATA: FUNDAMENTAL CONSTANTS AND VALUES

Unit 1

Mechanics and materials
moments \quad moment $=F d$
velocity and acceleration

$$
v=\frac{\Delta s}{\Delta t}
$$

$$
a=\frac{\Delta v}{\Delta t}
$$

equations of motion

	$v^{2}=u^{2}+2 a s$
	$s=\frac{(u+v)}{2} t$
force	$s=u t+\frac{1}{2} a t^{2}$
	$F=m a$
	$F=\frac{\Delta(m v)}{\Delta t}$
impulse	$F \Delta t=\Delta(m v)$
work, energy	$W=F s \cos \theta$
and power	$E_{\mathrm{K}}=\frac{1}{2} m v^{2} \quad \Delta E_{\mathrm{P}}=m g \Delta h$
	$P=\frac{\Delta W}{\Delta t}, P=F v$
	efficiency $=\frac{\text { useful output power }}{\text { input power }}$

density

$$
\rho=\frac{m}{V}
$$

Hooke's law $\quad F=k \Delta L$
Young modulus $=\frac{\text { tensile stress }}{\text { tensile strain }}$
tensile stress $=\frac{F}{A}$
tensile strain $=\frac{\Delta L}{L}$
energy stored $\quad E=\frac{1}{2} F \Delta L$

Particles, radiation and radioactivity
inverse square law for γ radiation $\quad I=\frac{I_{0}}{r^{2}}$

Unit 2

Electricity
current and pd $\quad I=\frac{\Delta Q}{\Delta t} \quad V=\frac{W}{Q} \quad R=\frac{V}{I}$
resistivity $\quad \rho=\frac{R A}{L}$
resistors in series $R_{\mathrm{T}}=R_{1}+R_{2}+R_{3}+\ldots$
resistors in parallel

$$
\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots
$$

energy
transferred
$E=I V t$
power $P=V I=I^{2} R=\frac{V^{2}}{R}$
emf $\varepsilon=\frac{E}{Q} \quad \varepsilon=I(R+r)$

Oscillations and waves

for a mass-spring
system

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

for a simple pendulum $\quad T=2 \pi \sqrt{\frac{l}{g}}$
$\begin{array}{lll}\text { wave } & c=f \lambda \quad \text { period } & f=\frac{1}{T} \\ \text { speed }\end{array}$
$\begin{aligned} & \text { first } \\ & \text { harmonic }\end{aligned} \quad f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$
$\begin{aligned} & \text { fringe } \\ & \text { spacing }\end{aligned} \quad w=\frac{\lambda D}{s} \quad \begin{aligned} & \text { diffraction } \\ & \text { grating }\end{aligned} d \sin \theta=n \lambda$
refractive index of a substance $s, \quad n=\frac{c}{c_{s}}$
for two different substances of refractive indices n_{1} and n_{2},
law of refraction
critical angle $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$ for $n_{1}>n_{2}$
photon energy $E=h f=\frac{h c}{\lambda}$
photoelectricity $h f=\phi+E_{\mathrm{k}(\text { max })}$
energy levels $h f=E_{1}-E_{2}$
de Broglie wavelength $\quad \lambda=\frac{h}{p}=\frac{h}{m v}$

Unit 3

Circular motion and periodic motion
magnitude of angular speed

$$
\omega=\frac{v}{r}
$$

$\omega=2 \pi f$
centripetal acceleration $\quad a=\frac{v^{2}}{r}=\omega^{2} r$
centripetal force
$F=\frac{m v^{2}}{r}=m \omega^{2} r$
acceleration
$a=-\omega^{2} x$
displacement
speed
$x=A \cos (\omega t)$
maximum speed
maximum acceleration
$v= \pm \omega \sqrt{A^{2}-x^{2}}$
for a mass-spring system
$v_{\max }=\omega A$
for a simple pendulum $\quad T=2 \pi \sqrt{\frac{l}{g}}$
total energy of an
oscillator

Electric fields and capacitance
force between point
charges in a vacuum
$F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r^{2}}$
force on a charge $\quad E=\frac{F}{Q}$
field strength for a
uniform field
field strength for a radial field

$$
E=\frac{V}{d}
$$

work done moving
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}$
a charge Q
$\Delta W=Q \Delta V$
$F d=Q \Delta V$
electric potential $\quad V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}$

$$
E=\frac{\Delta V}{\Delta r}
$$

capacitance
$C=\frac{Q}{V}$ $C=\frac{A \varepsilon_{0} \varepsilon_{r}}{d}$
capacitor energy stored
$E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}$

Gravitational fields and satellites
force between point masses $\quad F=\frac{G m_{1} m_{2}}{r^{2}}$
gravitational field strength $\quad g=\frac{F}{m}$
magnitude of gravitational
field strength in a radial field
$g=\frac{G M}{r^{2}}$
work done

$$
\Delta W=m \Delta V
$$

gravitational potential

$$
\begin{aligned}
V & =-\frac{G M}{r} \\
g & =-\frac{\Delta V}{\Delta r}
\end{aligned}
$$

Exponential change

time constant $\quad R C$
time to halve $\quad T_{1 / 2}=\ln 2 R C$
capacitor charging $\quad Q=Q_{0}\left(1-e^{-\frac{t}{R C}}\right)$
capacitor discharging $\quad Q=Q_{0} e^{-\frac{t}{R C}}$
radioactive decay $\quad \frac{\Delta N}{\Delta t}=-\lambda N$

$$
N=N_{\mathrm{o}} e^{-\lambda t}
$$

activity

$$
\begin{aligned}
& A=\lambda N \\
& A=A_{0} e^{-\lambda t}
\end{aligned}
$$

half-life

$$
T_{1 / 2}=\frac{\ln 2}{\lambda}
$$

Magnetic fields

force on a current

$$
F=B I l
$$

force on a moving charge $\quad F=B Q v$
magnetic flux

$$
\Phi=B A
$$

magnetic flux linkage $N \Phi=B A N \cos \theta$
magnitude of induced emf $\quad \varepsilon=\frac{\Delta \Phi}{\Delta t}$
emf induced in a rotating coil $\varepsilon=B A N \omega \sin \omega t$
alternating current

$$
I_{r m s}=\frac{I_{0}}{\sqrt{2}} \quad V_{r m s}=\frac{V_{0}}{\sqrt{2}}
$$

transformer equations $\quad \frac{N_{s}}{N_{p}}=\frac{V_{s}}{V_{p}}$
efficiency $=\frac{I_{s} V_{s}}{I_{p} V_{p}}$

Unit 4

Thermal physics
energy to change temperature
energy to change state
gas law
kinetic theory model
kinetic energy of gas molecule
thermodynamics

$$
Q=m c \Delta \theta
$$

$Q=m l$

gas law \quad| $p V=n R T$ |
| :--- |
| $p V=N k T$ | $p V=\frac{1}{3} N m\left(c_{r m s}\right)^{2}$

$\frac{1}{2} m\left(c_{r m s}\right)^{2}=\frac{3}{2} k T=\frac{3 R T}{2 N_{A}}$
$\Delta U=Q+W$
$W=p \Delta V$
rate of energy transfer by conduction
$\frac{k A \Delta \theta}{L}$
rate of energy transfer

Nuclear physics

nuclear radius	$R=R_{0} A^{1 / 3}$
energy-mass	
equation	$E=m c^{2}$

$$
R=R_{0} A^{1 / 3}
$$

equation

