

INTERNATIONAL AS AND A-LEVEL PHYSICS (9630) Data and formula booklet Insert

This booklet is provided with OxfordAQA International AS and A-level question papers v1.2

Quantity	Symbol	Value	Units
speed of light in vacuo	С	3.00×10^{8}	m s ⁻¹
permeability of free space	μ_o	$4\pi \times 10^{-7}$	H m ⁻¹
permittivity of free space	\mathcal{E}_0	8.85×10^{-12}	F m ⁻¹
magnitude of the charge of electron	е	1.60×10^{-19}	С
the Planck constant	h	6.63×10^{-34}	Js
gravitational constant	G	$6.67 imes 10^{-11}$	$N m^2 kg^{-2}$
the Avogadro constant	N _A	6.02×10^{23}	mol ⁻¹
molar gas constant	R	8.31	$J K^{-1} mol^{-1}$
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
electron rest mass (equivalent to 5.5×10^{-4} u)	m_e	9.11×10^{-31}	kg
electron charge/mass ratio	$\frac{e}{m_e}$	1.76×10^{11}	C kg ⁻¹
proton rest mass (equivalent to 1.00728 u)	m_p	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$\frac{e}{m_p}$	9.58×10^{7}	C kg ⁻¹
neutron rest mass (equivalent to 1.00867 u)	m_n	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	N kg ⁻¹
acceleration due to gravity	g	9.81	m s ⁻²
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

DATA: FUNDAMENTAL CONSTANTS AND VALUES

Astronomical data

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	$6.96 imes 10^8$
Earth	5.98×10^{24}	$6.37 imes 10^6$

Geometric	equations
Connormo	equations

arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
surface area of cylinder	$= 2\pi rh$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

Unit 1

Mechanics and materials

moments	moment = Fd	
velocity and acceleration	$v = \frac{\Delta s}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$
equations of motion	v = u + at	
	$v^2 = u^2 + 2as$	
	$s = \frac{(u+v)}{2} t$	
	$s = ut + \frac{1}{2} at^2$	
force	F = ma	
	$F = \frac{\Delta(m\nu)}{\Delta t}$	
impulse	$F\Delta t = \Delta(mv)$	
, 0,	$W = F s \cos \theta$	
and power	$E_{\rm K} = \frac{1}{2} m v^2$	$\Delta E_{\rm P} = mg\Delta h$
	$P = \frac{\Delta W}{\Delta t}, P = Fv$	
	efficiency = $\frac{\text{usefu}}{\text{i}}$	ıl output power
	i i	nput power
density	$\rho = \frac{m}{V}$	
Hooke's law	$F = k \Delta L$	
Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}}$		
tensile stress =	$\frac{F}{A}$	
tensile strain =	$\frac{\Delta L}{L}$	
energy stored	$E = \frac{1}{2}F\Delta L$	

Particles, radiation and radioactivity

inverse square law for γ radiation $I = \frac{I_0}{r^2}$

Unit 2

Electricity

current and pd	$I = \frac{\Delta Q}{\Delta t} \qquad V = \frac{W}{Q} \qquad R = \frac{V}{I}$	
resistivity	$ \rho = \frac{RA}{L} $	
resistors in series	$R_{\rm T} = R_1 + R_2 + R_3 + \dots$	
resistors in parallel	$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$	
energy transferred	E = IVt	
power	$P = VI = I^2 R = \frac{V^2}{R}$	
emf	$\varepsilon = \frac{E}{Q}$ $\varepsilon = I(R + r)$	
Oscillations and waves		
for a mass-spring	$T = 2\pi$	

 $T = 2\pi \sqrt{\frac{m}{k}}$ system $T = 2\pi \sqrt{\frac{l}{g}}$ for a simple pendulum wave $c = f\lambda$ period $f = \frac{1}{T}$ speed $f = \frac{1}{2l} \sqrt{\frac{T}{\mu}}$ first harmonic $w = \frac{\lambda D}{s}$ diffraction grating fringe $d\sin\theta = n\lambda$ spacing $n = \frac{c}{c_s}$ refractive index of a substance s, for two different substances of refractive indices

for two different substances of refractive indices n_1 and n_2 ,

$a_1 \sin \theta_1 = n_2 \sin \theta_2$
$\sin \theta_c = \frac{n_2}{n_1} \text{ for } n_1 > n_2$
$f = hf = \frac{hc}{\lambda}$
$f = \phi + E_{\rm k(max)}$
$f = E_1 - E_2$
$=rac{h}{p}=rac{h}{mv}$

Unit 3

Circular motion and periodic motion

magnitude of angular speed	$\omega = \frac{v}{r}$
	$\omega = 2\pi f$
centripetal acceleration	$a = \frac{v^2}{r} = \omega^2 r$
centripetal force	$F = \frac{mv^2}{r} = m\omega^2 r$
acceleration	$a = -\omega^2 x$
displacement	$x = A\cos\left(\omega t\right)$
speed	$v = \pm \omega \sqrt{A^2 - x^2}$
maximum speed	$v_{max} = \omega A$
maximum acceleration	$a_{max} = \omega^2 A$
for a mass-spring system	$T = 2\pi \sqrt{\frac{m}{k}}$
for a simple pendulum	$T = 2\pi \sqrt{\frac{l}{g}}$
total energy of an oscillator	$E = \frac{1}{2} m \omega^2 A^2$

Gravitational fields and satellites

force between point masses	$F = \frac{Gm_1m_2}{r^2}$
gravitational field strength	$g = \frac{F}{m}$
magnitude of gravitational field strength in a radial field	$g = \frac{GM}{r^2}$
work done	$\Delta W = m \Delta V$
gravitational potential	$V = -\frac{GM}{r}$
	$g = -\frac{\Delta V}{\Delta r}$

Exponential change

time constant	RC
time to halve	$T_{\frac{1}{2}} = \ln 2 RC$
capacitor charging	$Q = Q_0(1-e^{-\frac{t}{RC}})$
capacitor discharging	$Q = Q_0 e^{-\frac{t}{RC}}$
radioactive decay	$\frac{\Delta N}{\Delta t} = - \lambda N$
	$N = N_{\rm o} e^{-\lambda t}$
activity	$A = \lambda N$
	$A = A_{\rm o} e^{-\lambda t}$
half-life	$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$

Electric fields and capacitance

force between point charges in a vacuum	$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2}$
force on a charge	$E = \frac{F}{Q}$
field strength for a uniform field	$E = \frac{V}{d}$
field strength for a radial field	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
work done moving a charge <i>Q</i>	$\Delta W = Q \Delta V$
electric potential	$Fd = Q\Delta V$ $V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$
·	$4\pi\varepsilon_0 r$ $E = \frac{\Delta V}{\Delta r}$
capacitance	$C = \frac{Q}{V}$
	$C = \frac{A\varepsilon_0\varepsilon_r}{d}$
capacitor energy stored	$E = \frac{1}{2}QV = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{Q^{2}}{C}$

Magnetic fields

force on a current	F = BIl
force on a moving charge	F = BQv
magnetic flux	$\Phi = BA$
magnetic flux linkage	$N\Phi = BAN\cos\theta$
magnitude of induced emf	$\varepsilon = \frac{\Delta \Phi}{\Delta t}$
emf induced in a rotating coil	$\varepsilon = BAN\omega \sin \omega t$
alternating current I _{rms}	$= \frac{I_0}{\sqrt{2}} \qquad V_{rms} = \frac{V_0}{\sqrt{2}}$
transformer equations	$\frac{N_s}{N_p} = \frac{V_s}{V_p}$
	IV

efficiency = $\frac{I_s V_s}{I_p V_p}$

Unit 4

Thermal physics

Energy sources

Thermal physics		moment of inertia	$I = mr^2$
energy to change temperature	$Q = mc\Delta\theta$	angular kinetic	$I = \Sigma m r^{2}$ $E_{k(rot)} = \frac{1}{2} I \omega^{2}$
energy to change state	Q = ml	energy equations of	$L_{\rm k(rot)} = \frac{1}{2} I \omega$
gas law	pV = nRT $pV = NkT$	angular motion	$\omega = \omega_0 + \alpha t$ $\omega^2 = \omega_0^2 + 2\alpha\theta$
kinetic theory model	$pV = \frac{1}{3}Nm (c_{rms})^2$		$\theta = \omega_0 t + \frac{1}{2}\alpha t^2$
kinetic energy of gas molecule	$\frac{1}{2}m (c_{rms})^2 = \frac{3}{2}kT = \frac{3RT}{2N_A}$		$\theta = \frac{(\omega_0 + \omega)}{2}t$
thermodynamics	$\Delta U = Q + W$	torque	$T = I\alpha$
	$W = p\Delta V$		T = Fr
rate of energy	$kA\Delta heta$	angular momentum	Iω
transfer by conduction	L	angular impulse	$T\Delta t = \Delta(I\omega)$
rate of energy transfer	$UA\Delta \theta$	work done	$W = T\theta$
		power	$P = T\omega$
Nuclear physics		maximum power available from a turbine	$P = \frac{1}{2}\pi r^2 \rho v^3$
nuclear radius	$R = R_0 A^{1/3}$	solar intensity	$I = \frac{P}{4\pi r^2}$
energy-mass	$E = m c^2$		

energy-mass $E = m c^2$ equation