

INTERNATIONAL GCSE COMBINED SCIENCE PHYSICS DOUBLE AWARD

(9204)

Core and extension Example responses with commentary

For teaching from September 2016 onwards For GCSE exams in May/June 2018 onwards

This guide includes some examples of student responses to a selection of questions from the summer 2018 Combined Physics Science. The question parts are reproduced, along with the final mark scheme, student responses and a commentary from the Lead Examiner on each of the students' answers.

PHYSICS EXTENTION PAPER

QUESTION

04.5

0 4.5 The maximum velocity of the cage is 150 km/h.
The mass of the cage and passengers is 390 kg.
Gravitational field strength = 9.8 N/kg.

Calculate the maximum height the cage reaches above the ground. Use the correct equations from the Physics equation sheet.

[4 marks]

MARK SCHEME

Question	Marking guidance	Mark	Comments
04.5	Initial velocity = 41.7 m/s initial E_k = final E_p $1/2 \times (390) \times 41.7^2 = 9.8 \times (390) \times h$ 88.7 (m)	1 1 1	an answer of 88.7 (m) or 90 (m) scores 4 marks an answer of 1150 (m) scores 3 marks allow 90 (m)

STUDENT A

0 4 . 5	The maximum velocity of the cage is 150 km/h.
	The mass of the cage and passengers is 390 kg. Gravitational field strength = 9.8 N/kg.
	Calculate the maximum height the cage reaches above the ground. Use the correct equations from the Physics equation sheet.
	[4 marks]
	SEL = SEp = mx gx h = = = x m x v
	8.8N/kg xh = = x (150 km/h) = = 1 x (41.7 m/s) h = 3.13 m 150km/h = 41.7 m/s
	h= 3.13m 15pm/h=41.7m/s
	- Warning of the state of the s
	Maximum height = 2./3 m

EXAM COMMENTARY

The student has correctly given the relationship required for the calculation and has converted km/h into m/s. Their substitution is correct but unfortunately an arithmetic error has prevented them from scoring full marks.

STUDENT B

0 4 . 5	The maximum velocity of the cage is 150 km/h.		
	The mass of the cage and passengers is 390 kg. Gravitational field strength = 9.8 N/kg.	150 km/n	
	Calculate the maximum height the cage reaches ab Use the correct equations from the Physics equatio	ove the ground.	
			[4 marks]
	be forth		
	man=zmv2	. 59	
	mgh= zmv² P.8 zx380x150=280xpoxh		
	N=N50M		
		511	
	Maximum height =	1150	m

EXAM COMMENTARY

The student has correctly identified the relationship required for the calculation but has failed to convert km/h into m/s. The substitution and rearrangement are correct so they only miss out on the first marking point.

STUDENT C

0 4 5	The maximum velocity of the cage is 150 km/h.
	The mass of the cage and passengers is 390 kg.
	Gravitational field strength = 9.8 N/kg
	g. P. e = wgh.
	Calculate the maximum height the cage reaches above the ground. Use the correct equations from the Physics equation sheet.
	9+9 [4 marks]
	g.p.e = mgh E.e 1147. 96 km = H4796 m
	mgh = zm/2
	mg4 = = xxxx xp kg x 150km/h
	mgh = A387500 bg. pm/h
	390kg × 918N/by. h= 438750 by. bun/h
	3822 - h ≈ 438750
	4= 1147. 96 to por
	Maximum height = 1479+9 m

EXAMINER COMMENTARY

The student has correctly identified the relationship required for the calculation but has failed to convert km/h into m/s. The substitution and rearrangement are correct however, they have misunderstood the use of km/h and assumed that the answer they have is in km. They have then multiplied their answer by 1000 to 'convert' to m.

QUESTION

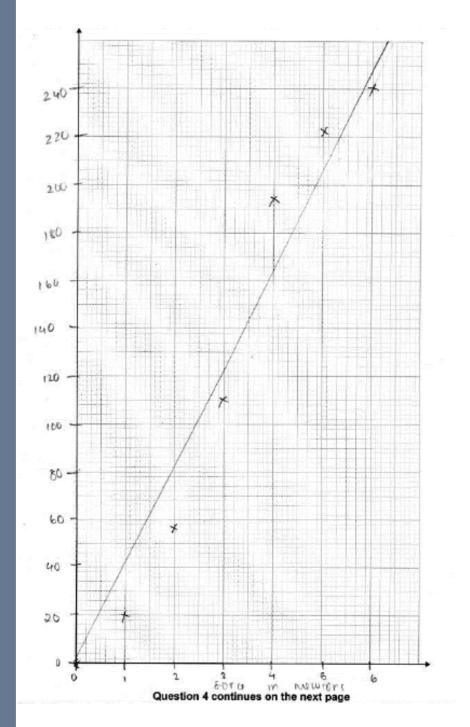
04.2

0 4. 2 The student obtained the results in Table 3.

Table 3

Force in N	Mean extension in mm
0	0
1	20
2	58
3	115
4	181
5	225
6	240

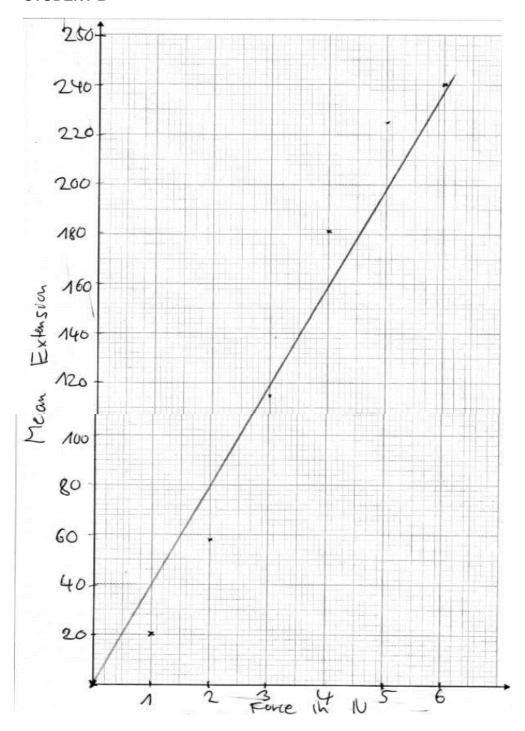
Plot a graph of extension (y-axis) against force (x-axis) and draw a line of best fit.


Use the grid on page 17.

[4 marks]

MARK SCHEME

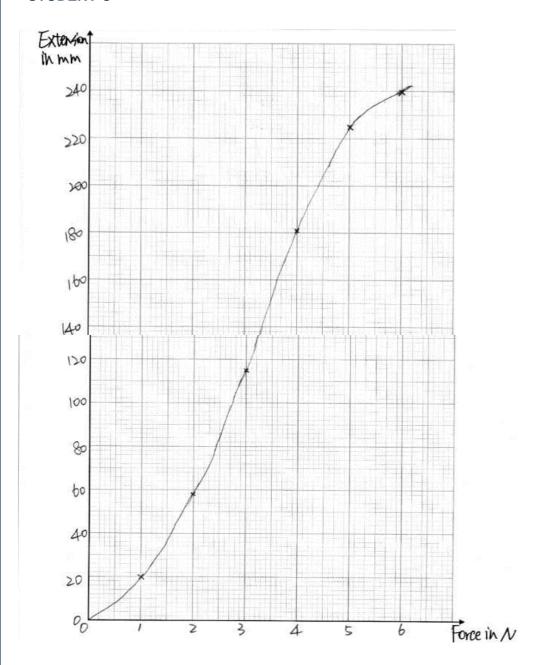
Question	Marking guidance		Comments
	axes labelled with quantities and units	1	
04.2	scales chosen so that the points fill at least half of the paper scales in sensible increments eg. 10, 20	1	
	points plotted correctly	1	
	smooth curve of best fit drawn	1	


STUDENT A

EXAMINER COMMENTARY

The student has not fully labelled the axes with quantities and units although they have given a correct scale to score the second marking point. A number of points have been plotted incorrectly and the line of best fit has been drawn as a straight line rather than a curve.

STUDENT B



EXAMINER COMMENTARY

The student has not fully labelled the axes by missing the unit for mean extension.

Their scale is appropriate and points are correctly plotted but their line of best fit is incorrect.

STUDENT C

EXAMINER COMMENTARY

The student has labelled the axes with quantities and units and has chosen an appropriate scale.

Their points are correctly plotted and a curve has been drawn for the line of best fit.

QUESTION

01.1, 01.2 AND 01.3

0 1. 1 What is meant by the term thinking distance?

[1 mark]

0 1. 2 The speed of a vehicle affects thinking distance.

State one other factor that affects a driver's thinking distance.

[1 mark]

0 1. 3 Explain why this factor affects thinking distance.

[2 marks]

MARK SCHEME

Question	Marking guidance	Mark	Comments
	Level 2: Scientifically relevant facts, events or processes are identified and given in detail to form an accurate account.	3-4	
	Level 1: Facts, events or processes are identified and simply stated but their relevance is not clear.	1-2	
	No relevant content		
	Indicative content		
04.1	Reducing errors Ensure that the metre ruler is vertical in the clamp stand Take readings at eye level to avoid parallax errors Ensure that the elastic stops moving before taking a reading		ignore references to repeating readings
	Increasing accuracy Use a pointer between the elastic and the hanging mass to increase the accuracy of the reading from the ruler Use a set square to ensure that the metre ruler is vertical in the clamp stand		
	axes labelled with quantities and units	1	
04.2	scales chosen so that the points fill at least half of the paper scales in sensible increments eg. 10, 20	1	
	points plotted correctly	1	
	smooth curve of best fit drawn	1	
04.3	does not obey Hooke's law because the relationship is not directly proportional	1	allow because it's not a straight line through the origin
	only one elastic band has been tested	1	

The stopping distance of a vehicle is equal to thinking distance plus braking distance. O 1 . 1 What is meant by the term thinking distance? [1 mark] The time it loves for a driver to reach O 1 . 2 The speed of a vehicle affects thinking distance. State one other factor that affects a driver's thinking distance. [1 mark] Alcohol Explain why this factor affects thinking distance. [2 marks] Alcohol Slows down the brain and affects your co-ordination which affects the Hunling distance,

EXAMINER COMMENTARY

There are a number of misconceptions in the answers to these questions. In 01.1the student has incorrectly stated that thinking distance is a 'time'. This is a common error.

In 01.2 there are a range of acceptable answers, this being one example. Students should describe factors that affect reaction time rather than giving reaction time as a factor.

In 01.3 the student has referred to 'thinking slower'. This is not sufficient to describe reaction time increasing. They have not made the link between increased reaction time and travelling further before braking so don't score the second marking point.

STUDENT B

. 1 Wh	at is n	neant by	the term	thinking o	listance?			ľ
-		25 K		the	dista	ince	travelle	ed 🐐
On	4//	the	drive	v 100	acts	and	presse	s on
							pe	whees
. 2 The	spee	ed of a ve	ehicle affe	ects thinkin	g distance	Ç.	\mathcal{D}_{i}	anco
Sta	te on	e other 1	factor that	t affects a	driver's thi	nking dis	stance.	ı
Sta				t affects a d		nking dis	stance.	· ·
e	Alc	cohal	an		ruges		stance.	[2
e	A\c	cohol hy this fa	Qrv actor affec	d de	distance.		anting	[2
Expl	A\c	hy this fa	QCV actor affect	d dr cts thinking down	distance.	. #		[2

EXAMINER COMMENTARY

In 01.1 the student has correctly identified the link between distance travelled and the driver's reaction time.

In 01.2 both examples given are acceptable answers.

In 01.3 the student has talked about thinking distance 'slowing down' which is a common, but incorrect idea. Another common, incorrect idea is that reaction time 'slows down'.

STUDENT C

0 1	The stopping distance of a vehicle is equal to thinking distance plus braking distance.
0 1.1	What is meant by the term thinking distance? [1 mark] The time it takes for the driver to think about stopping
0 1.2	The speed of a vehicle affects thinking distance. State one other factor that affects a driver's thinking distance. [1 mark]
0 1.3	Explain why this factor affects thinking distance. [2 marks] The influence of alcohol affects a humans brain and makes us slower thinker which would become the thinking distance as we would have to think for a longer time before reading.

EXAMINER COMMENTS

In 01.1 this student has incorrectly stated that thinking distance is a time. Their description of reaction time as being 'time to think' is insufficient.

In 01.2 a correct response has been given.

In 01.3 thinking for a longer time before reacting scores 1 mark but there is no link to distance travelled during this time so this does not gain a second mark.

QUESTION

07.3

0 7.3 Table 4 shows the expected life span of stars of different masses.

Table 4

Relative mass of star (solar masses)	Expected lifespan (million years)
60	3
30	11
10	33
3.0	370
1.5	3000

A student is given the data and makes the conclusion:

"the relative mass of the star is inversely proportional to the expected lifespan."

Explain whether the data support this conclusion.

[4 marks]

MARK SCHEME

Question	Marking guidance	Mark	Comments
	·		
	calculation of k from one line of data	1	
	calculating a second value of k	1	
	or		
	using calculated k in a second set of data		
		1	
	correct conclusion based on their values		
	further calculation leading to some data does and some does not fit the relationship	1	
07.3			
	OR		
	most of the data does not support the conclusion (1)		
	(because) when the relative mass of the star doubles the expected lifespan does not half (1)		
	(however) the data for relative masses 10 and 30 does support the conclusion (1)		
	(because) the mass triples and the expected lifespan is one third (1)		

STUDENT A

A student is given the data and makes the conclusion:

"the relative mass of the star is inversely proportional to the expected lifespan."

Explain whether the data support this conclusion.

[4 marks]

Lata boes not support this conclusion.

Expected lifespan bid reduced

as relative in mass of star increase, however the inverse is lifespan
is may larger than docrease in mass of star.

300 300 30 lifespan invested 8 times when mass of star

decreased 2 times. This suffert that they are not
invested proportional.

EXAMINER COMMENTARY

The student has identified data that does not support the conclusion and has gone on to compare the relationship between two sets of data. They have not recognised that there are two sets of data that do support the conclusion so do not gain the marks for this.

\sim				_	
•					-
	u	\mathbf{L}	4 — 1		

"the relative mass of the star is inversely proportional to	the expected lifespan."
Explain whether the data support this conclusion.	[4 marks]
60 = k	
60 x 3 = 180	

EXAMINER COMMENTARY

The student has calculated a value for 'k' from one set of data so gains the first marking point. To gain further marks the student would need to calculate 'k' for a second set of data and draw a conclusion from their values.

STUDENT C

Explain whether the data support this conclusion.	[4 marks]
As the relative mass of slow decreases,	
lik span in wears. Therefore it's inversely p	
when the Homass is bo the lifepa	
when the mass is 1.51 the life pa	is zon.
Therefore it's inversely proportion!	

EXAMINER COMMENTARY

Many students do not understand the term inversely proportional. In this example, the student has looked at the decrease in mass and the increase in expected lifespan and concluded that this is inversely proportional. They have used the data to support their idea, which is good for this type of question, but do not gain credit as all they have succeeded in doing is exemplify two different pairs of measurements, not the trend within the data.

QUESTION

06.3

0 6. Discuss the advantages and disadvantages of using a solar power station to generate electricity compared to using fossil-fuelled power stations.

[6 marks]

MARK SCHEME

Question	Marking guidance	Mark	Comments
	Level 2: Scientifically relevant features are identified; the way(s) in which they are similar/different is made clear and (where appropriate) the magnitude of the similarity/difference is noted.	4-6	ignore costs
	Level 1: Relevant features are identified and differences noted.	1-3	
	No relevant content	0	
	Advantages		
	No CO ₂ emissions		
00.0	(so) reduces global warming		
06.3	No SO ₂ emissions		
	(so) reduces acid rain		
	Renewable		
	Can be used to meet sudden demand		
	More efficient than fossil fuelled power stations		
	Disadvantages		
	Large area of land needed for the number of mirrors required		
	Energy requirement to keep the fluid at 290 °C		ignore unreliable unless linked to cloudy weather / fewer
	Energy for storage is limited if cloudy / raining		hours of daylight at certain times of year
	Not suitable for use in many locations around the world		
	 Transporting large mass of oil and salt to the location will release CO₂ 		

STUDENT A

Discuss the advantages and disadvantages of using a solar power station to generate electricity compared to using fossil-fuelled power stations.

[6 marks]

60 at powers station is a renewable energy source,
it will never two out and can also be repraced but fossil fueus are nontenewable, it will fun out one day. Introduce tolar power stations are also introduced reliable however sometimes it can be hard to increase supply when there's an analose in durand. Solar power station take up alot of space and spoil me view. It can also disturb me people living nearby, it also provides less energy as compared to fossil fuels.

EXAMINER COMMENTARY

This response is a clear level 1 response. The student has identified some simple advantages and disadvantages of using a solar power station. They have not referred to any environmental effects other than the appearance of the power station so do not gain further credit.

STUDENT B

Discuss the advantages and disadvantages of using a solar power station to generate electricity compared to using fossil-fuelled power stations.

[6 marks]

Solar power station to generate the sun exists, it is also eco-forody as it does not provide (02 emissions and solar powers fousil selvent and eco-forody as it does not provide (02 emissions and solar powers fousil selvent and eco-forody as it does not provide (02 emissions and solar powers fousil selvent and eco-forody as it does not provide (02 emissions and solar powers fousil selvent and solar energy for state of solar energy in the morning or where the sun is skining. This prans you can use fossil fuels graphing hower you are only extract solar energy at atom withing.

EXAMINER COMMENTARY

This response is an example of a low level 2 response. The student has given simple advantages and disadvantages. They have also gone on to discuss carbon dioxide emissions and made the link to greenhouse gases. Their disadvantages discussion is weaker with reference to energy from sunlight only being available in the mornings.

STUDENT C

Discuss the advantages and disadvantages of using a solar power station to generate electricity compared to using fossil-fuelled power stations. [6 marks] Solar power etations are energy. They don't produce greenhouse grees such as co so they don't harm the environment. However they work in precense of sun so in countries much sun they wouldn't expensive to install demand Fossil Ruels must be however unlike Foosil Fuels they don't sulfuric acid that would cause acid causes climate change. stations can be unsightly and they need large spaces.

EXAMINER COMMENTARY

This is an example of a clear level 2 response. The student has given a good account of the environmental benefits of solar power stations, referring to both carbon dioxide and sulphur dioxide. Their discussion of the disadvantages is slightly weaker referring to 'not much sun' rather than linking to hours of daylight or typical weather conditions. Sunlight is a better way of describing 'Sun' too. They have also talked about solar power stations only work in the presence of sun without clarifying that they understand that cloudy conditions will limit, rather than stopping generation of electricity or provision of energy for storage.

QUESTION

02.1

0 2. 1 An electromagnet can be made by coiling an insulated wire around an iron nail.

A student makes the following hypothesis:

"Changing the number of turns of wire will change the strength of an electromagnet."

The student has a nail, a long insulated wire, a power supply, an ammeter and paper clips.

Describe how the student could use this equipment to test the hypothesis.

You should include:

- the independent variable
- the dependent variable
- · measurements to record
- · variables to be controlled and how to control them
- safety considerations.

You may include a labelled diagram in your answer.

[6 marks]

MARK SCHEME

Question	Marking guidance	Mark	Comments
02.1	Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6	
	Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	3-4	
	Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2	
	No relevant content	0	

STUDENT A

Describe how the student could use this equipment to test the hypothesis.

You should include:

- the independent variable
- · the dependent variable
- · measurements to record
- · variables to be controlled and how to control them
- safety considerations.

You may include a labelled diagram in your answer.

[6 marks]

De pend	ent	variable	: The	distance	et piper	clip	could
be a	(HEFF	attracte	d.				
Control	led v	driable:	The cu	irrent a	through	h the	coll.
1 Put	nail	In the	e coil	rewro	d the	humbe	er of
				2 0 de			4
na; (15	maghe	etised.	3 Place	e the	paper	clif
				Record			
than	P	it conl	d be	attha	cted. (7 Change	e the
numb	er ø	t tur	ns of	wire.	and	vegeat	step

EXAMINER COMMENTS

This is an example of an alternative method to describe this investigation. The student has correctly identified the independent variable and a suitable dependent variable that links to their method of measuring distance that a paperclip can be attracted from. There is only one control variable identified. Safety has not been considered in their response. This response is a good level 2 response but the lack of control variables and safety considerations means that the account is not enough for level 3.

STUDENT B

Describe how the student could use this equipment to test the hypothesis.

You should include:

- · the independent variable
- · the dependent variable
- · measurements to record
- · variables to be controlled and how to control them
- safety considerations.

You may include a labelled diagram in your answer.

[6 marks]

The student can start by pluing a
clips beneath & an electromagn + which
he should make by coiling the wire around
the hail a set number at times. Then
he should connect the vive to the power
supply and see how many paper clips
supply and see how many paper clips are picked up by the neal with sprintic numbers of turns of wire. The student should
numbers of turns of wire. The student should
reprut the expirement for wine tit
repret the expirement for wine title electromagnets with different numbers of
turns of wire
The student should make
The student should make sure his hould are not wet so that he
doesnot eatch electricity.

EXAMINER COMMENTARY

The student has given an account of the investigation and given correct statements about measurements to record but has not made any link to the variables. There is no consideration of control variables in the account and the safety considerations are weak.

The basic idea of how to carry out the experiment but with no suggestions as to how to achieve a valid outcome means that the response is level 1.

STUDENT C

Describe how the student could use this equipment to test the hypothesis.

You should include:

- · the independent variable
- · the dependent variable
- · measurements to record
- variables to be controlled and how to control them
- safety considerations.

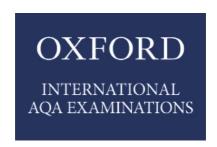
You may include a labelled diagram in your answer.

[6 marks]

Firstly the student should consider
the independent variable. They
the independent variable. They should make it the number of
times coils of wire around the
is wrapped around the weaker strong
the current will be. The student
also needs to consider how tightly
they are wrapping the wire
around the nail.

EXAMINER COMMENTARY

This response is well structured and the student attempts to address all of the bullet points. They correctly identify the independent variable, although they should be referring to 'turns on the coil' rather than 'number of coils'.


The student then goes on to incorrectly link number of turns to current in the coil. They have the incorrect dependent variable and then go on to say that number of paper clips picked up should be recorded. In their discussion about control variables they refer to the power supply but this is a contradiction to earlier in the answer where they talked about adjusting the power source to vary the current. The account is unclear and contains a number of misconceptions about the investigation so this is a level 1 response. The correctly identified independent variable and a relevant step involving number of paperclips allow this response to gain 1 mark.

FURTHER GUIDANCE AND CONTACTS

You can contact the subject team directly at science@oxfordaqaexams.org.uk

Please note: We aim to respond to all email enquiries within two working days.

Our UK office hours are Monday to Friday, 8am - 5pm local time.

OXFORD INTERNATIONAL AQA EXAMINATIONS GREAT CLARENDON STREET, OXFORD, OX2 6DP UNITED KINGDOM

enquiries@oxfordaqaexams.org.uk oxfordaqaexams.org.uk