O Knowledge

P12 Kinetic theory and energy transfer

Kinetic theory

Kinetic theory explains the states of matter, and what happens in changes of state.

State	Arrangement	Movement	Properties
gas	particles are spread out; almost no forces of attraction between particles	particles move randomly at high speed	low density; no fixed volume; can be compressed or flow; fill available space
liquid	particles are in contact with each other; forces of attraction between particles are weaker than in solids	particles are free to move randomly around each other	usually lower density than solids; fixed volume; can flow
solid	particles held next to each other in fixed positions by strong forces of attraction	particles vibrate about fixed positions	high density; fixed volume; fixed shape (unless distorted by external forces)

Internal energy

Heating a substance increases its internal energy. Internal energy is the sum of the total kinetic energy due to the particles' motion and the total potential energy due to the particles' positions.

Specific heat capacity

When a substance is heated or cooled the temperature change depends on: the substance's mass, the type of material, and how much energy is transferred to it.
Every type of material has a specific heat capacity the amount of energy needed to raise the temperature of 1 kg of the substance by $1^{\circ} \mathrm{C}$.
The energy change can be calculated using:
change in thermal energy $(J)=$ mass $(\mathrm{kg}) \times$ specific heat capacity $\left(\mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}\right) \times$ temperature change $\left({ }^{\circ} \mathrm{C}\right)$

$$
\Delta E=m c \Delta \theta
$$

Change of state and impurities

Only a pure substance produces a horizontal line on a temperature-time graph of change of state.

Melting points and boiling points are affected by impurities.

Latent heat

The graph shows the temperature change over time, when a substance is heated or cooled. While the substance is changing state, the energy transfered does not change the temperature, but it does change the internal energy. So these show as flat sections on the graph.

The energy transferred when a substance changes state is called the latent heat.
Specific latent heat - the energy required to change 1 kg of a substance with no change in temperature.

This can be calculated using:

$$
\left.\begin{array}{l}
\text { thermal energy for } \\
\text { a change in state } \\
(\mathrm{J})
\end{array}=\begin{array}{c}
\text { mass } \\
(\mathrm{kg})
\end{array} \times \begin{array}{c}
\text { specific }
\end{array}\right)(\mathrm{J} / \mathrm{kg}) \mathrm{latent} \mathrm{heat}
$$

$$
E=m \times L
$$

Specific latent heat of fusion - the energy required to melt 1 kg of a substance with no change in temperature.
This can be calculated using: $\quad E=m \times L_{F}$
Specific latent heat of vaporisation - the energy required to evaporate 1 kg of a substance with no change in temperature.
This can be calculated using: $\quad E=m \times L_{V}$

Key terms

Make sure you can write a definition for these key terms.
condensation conduction convection evaporation expansion impurities insulator
internal energy kinetictheory latentheat specificheatcapacity

Energy transfer - conduction

In solids, energy is mainly transferred by conduction.

In a metal, energy is transferred by the movement of free electrons. Metals are conductors.

Insulators do not have electrons that can move easily.

Energy transfer - convection

When a fluid (liquid or gas) is heated, the particles move further apart and the density of the fluid decreases.
Warm fluid floats above cooler fluid.

This is convection.

Rate of evaporation

A liquid will evaporate faster if:

- the temperature difference between the liquid and the surroundings is greater
- the surface area of the liquid is larger
- there is wind or air movement near the surface
- the liquid has a low boiling point.

Rate of energy transfer

Hot objects transfer energy to the surroundings. The rate of transfer depends on:

- the surface area and volume of the object
- the material from which the object is made
- the nature of the surface with which the object is in contact.

Elephants have large ears to increase the surface area available for cooling. Engines and computers have devices with 'cooling fins' to increase the surface area.
Moving a liquid over a surface, or blowing air over a surface, will allow it to cool more quickly.

Heating and expansion

Most solids expand when they are heated. The amount of expansion for each increase of $1^{\circ} \mathrm{C}$ in temperature can be different. This can be useful. Bimetallic strips can be used in systems that control temperature. The strip consists of two metals stuck together.

Thermal expansion can cause bridges, roofs, and railway lines to buckle.
Expansion joints enable sections to move together safely.

Learn the answers to the questions below then cover the answers column with a piece of paper and write as many as you can. Check and repeat.

P12 questions

Answers

Give the spacing and movement of particles in solids, liquids, and gases.

2
What happens to the particles in a substance if its temperature is increased?
(3) What is the internal energy of a substance?

What is specific heat capacity of a substance?
(5)

Why is the mass of a substance conserved when it changes state?

On a graph showing the change in temperature
6 of a substance as it cools, why is the section when the substance is changing state flat?
(7)

What is the name given to the energy transferred when a substance changes state?

8
What is the specific latent heat of a substance?

What is the specific latent heat of fusion of a substance?

10
What is the specific latent heat of vaporisation of a substance?

On a graph of temperature against time for a
substance being heated up or cooled down, what do the flat (horizontal) sections show?

12
How is energy transferred by conduction in metals?

How is energy transferred by convection?

What happens to the temperature of a liquid as it evaporates?

15
Describe four factors that affect the rate of evaporation of a liquid.

Describe three factors that affect the rate of transfer of energy.

Describe one use of thermal expansion.
Describe one situation where thermal expansion is a problem.
solids: touching, vibrating; liquids: touching, moving around; gases: moving fast, far apart
they move faster and the kinetic energy increases
the total kinetic energy and potential energy of all the particles in the substance
the amount of energy needed to raise the temperature of 1 kg of the substance by $1^{\circ} \mathrm{C}$
the number of particles does not change
the energy transferred during a change in state causes a change in the internal energy of the substance
latent heat
the energy required to change the state of 1 kg of the substance with no change in temperature
the energy required to change 1 kg of the substance from solid to liquid at its melting point, without changing its temperature
the energy required to change 1 kg of the substance from liquid to vapour at its boiling point, without changing its temperature
the time when the substance is changing state and the temperature is not changing
free electrons move through the metal
hot gas or liquid is less dense and floats above colder gas or liquid
it decreases
surface area, temperature difference, boiling point, air movement across surface
surface to volume ratio, type of material, type of surface
bimetallic strips
buckling of roads/bridges/railway tracks

Previous questions

Answers

According to Newton's Second Law, what is the acceleration of an object inversely proportional to?
(2) Name the four ways in which energy can be transferred

What do electromagnetic waves transfer from their source to an absorber?
(4)

What is a virtual image?
(5) Which parts of the eye control the shape of the lens?

Required Practical

Practise answering questions on the required practicals using the example below. You need to be able to apply your skills and knowledge to other practicals too.

Melting point	Worked example	Practice
To determine the melting point of stearic acid, you need to measure the temperature of stearic acid as it is heated. To do this, you use a thermometer and a timer. In the experiment, you need to: - use a thermometer that is already in a boiling tube of stearic acid - clamp the tube so the stearic acid is surrounded by water in a beaker - use a Bunsen burner to heat the water, and stir the water to maintain an even temperature - plot the data as you go until the temperature reaches $70^{\circ} \mathrm{C}$ - wear eye protection. If there are impurities in the stearic acid, the line on the graph when the stearic acid is melting will not be horizontal.	A student heats a boiling tube of stearic acid in a water bath. They measure the temperature of the stearic acid as it is heated, and plot this graph. 1 Write down the time interval between measurements. Answer: The measurements are one minute apart. 2 Estimate the melting point of stearic acid. Explain how you arrived at your answer. Answer: $70^{\circ} \mathrm{C}$ This is the horizontal section of the graph. 3 Sketch the graph for freezing a sample of stearic acid, with: a a few impurities b lots of impurities. Answer:	A student wants to work out if a sample of water contains impurities. 1 Describe the experimental procedure that would enable them to do this. 2 Sketch a temperature-time graph for a sample of pure water. 3 Describe how the student will use the temperaturetime graph for the sample to decide if it is pure.

-
 Practice

Exam-style questions

01 A block of aluminium has a mass of 1.2 kg .
It is at room temperature, which is $20^{\circ} \mathrm{C}$.

A student uses a heater to increase the temperature to $50^{\circ} \mathrm{C}$.
01.1 Calculate the difference between the initial and final temperatures.

[1 mark]

Temperature change $=$ \qquad
01.2 The specific heat capacity of aluminium is $900 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$.

Calculate the energy transferred to the aluminium to raise its temperature.

Use the correct equation from the Physics Equations Sheet. [2 marks]
\qquad
01.3 A student does this experiment and finds that the energy they need to transfer is bigger than the energy calculated in 01.2.
Suggest why.
[1 mark]
\qquad
\qquad

02 A student is learning about internal energy.
They draw two diagrams, \mathbf{A} and \mathbf{B}, as shown in Figure 1.
02.1 Complete the sentences using the words in the box. [4 marks]

kinetic	vibrating	moving fast
potential	gravitational	moving slowly

In diagram A, the particles are \qquad Most of the internal energy is due to the \qquad energy of the particles.

In diagram B, the particles are \qquad Most of the internal energy is due to the \qquad energy of the particles.
02.2 The sample shown in Figure $\mathbf{1} \mathbf{A}$ is heated for a long time. Describe how the internal energy of the sample changes. [2 marks]
\qquad
\qquad
The first thing you must do is write down the equation. This is a key skill and you need to get into the habit of always writing that down first.

P12
02.3 The sample shown in Figure $\mathbf{1} \mathbf{B}$ is heated.

The student decides to use the particle model to describe and explain what happens.

Which statement is correct?
Tick one box.

As the gas is heated, the average kinetic energy of the molecules decreases.

The average kinetic energy of the molecules is independent of the temperature of the gas.

If the temperature of a gas increases, the pressure that the gas exerts decreases (if the volume stays the same).

The particles in a gas are in random motion.

03 A swimming pool is heated by the Sun.
A paddling pool next to the swimming pool is also heated by the Sun.
A student notices that the temperature of the paddling pool is higher than the temperature of the swimming pool.
The student makes the estimates shown in Table 1.
Table 1

	Swimming pool	Paddling pool
energy transferred by the Sun	88000 MJ	28.8 MJ
temperature of pool	$25^{\circ} \mathrm{C}$	$28^{\circ} \mathrm{C}$
starting temperature	$18^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$
specific heat capacity of water	$4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$	$4200 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$

03.1 Use Table 1 to find the ratio of the mass of water in the paddling pool to the mass of water in the swimming pool.
Use the correct equation from the Physics Equations Sheet.
Use an appropriate number of significant figures.
[6 marks]

Exam Tip

Don't let these big numbers worry you. Just plug the numbers (carefully) into your calculator and you'll be fine!

! Exam Tip

Put the numbers in first before you rearrange the equation.
03.2 At the end of the day the pool owner puts an identical cover over each pool.
If energy transfer is only through the cover, suggest why:

- the swimming pool might take longer to cool down
- the paddling pool might take longer to cool down.

04 A student is comparing the specific heat capacities of two liquids \mathbf{A} and \mathbf{B}. Both liquids have the same mass. They use a heater to change the temperature of the liquids, and an energy meter to measure the energy transferred to each liquid by the electric current.
It takes 1.8 kJ of energy to raise the temperature of 10 g of liquid \mathbf{A} by $50^{\circ} \mathrm{C}$. Calculate the specific heat capacity of liquid \mathbf{A}. Use the correct equation from the Physics Equations Sheet.
Liquid \mathbf{B} has a specific heat capacity that is twice that of liquid \mathbf{A}. Suggest two differences that the student would observe if they heat the 10 g of liquid \mathbf{B} using the same heater. Justify your answer.
[6 marks]

! Exam Tip

Pull all the key information out of the text first, for example:
Liquid A
mass =
energy used =
temperature change $=$
05.1 What quantities do you need to find to work out kinetic energy?

Choose one answer.
[1 mark]
mass and speed mass and time speed and time
05.2 Car A and car B are both moving in different ways. Car A accelerates under a constant force for three seconds at the start of a race.
During the same three seconds car \mathbf{B} is travelling at a steady speed on a motorway.

Compare:

- the ways energy is stored for each car at the start and end of the three seconds
- the way energy is transferred.
[6 marks]
05.3 All cars require that you add oil to the engine. Suggest one benefit of adding oil to the engine. Use the idea of energy to explain your answer.
[2 marks]

06 An electric iron switches off when it gets to the required temperature. The iron contains a bimetallic strip.

In Figure 2, a current is flowing and the heater is on.
Figure 2

06.1 Describe what happens to materials when they are heated.
06.2 Explain how the bimetallic strip ensures that the iron turns off at the correct temperature.
[2 marks]
06.3 The control knob is turned so that it pushes the contact down and bends the bimetallic strip.
Suggest what happens to the temperature at which the circuit is switched off. Explain your answer.
[2 marks]

07 A student is investigating the purity of an unknown solid. They are given a boiling tube with the solid and a temperature probe embedded in it. The temperature probe is connected to a data logger that records the temperature every minute. The student places the tube in a beaker of water on top of a hot plate. They turn the hot plate on and start the data logger.
07.1 Name the type of energy transfer between the hot plate and water.
[1 mark]
07.2 Explain why the water at the bottom of the beaker will rise. [2 marks]
07.3 Describe the observation that will indicate to the student that the solid is pure.
[1 mark]
07.4 At the end of the experiment, the student notices that water level in the beaker is lower even though the water has not boiled.
Explain why, in terms of particles.
[2 marks]
07.5 Which of the following statements are correct?

Choose two answers.
[2 marks]
If the water was at a lower temperature, the evaporation rate would be higher.
If the room temperature was higher, the evaporation rate would be higher.
If the liquid had a lower boiling point, the evaporation rate would be higher.
If the surface area of the liquid was higher, the evaporation rate would be higher.

08 A student set up an experiment to measure the specific heat capacity of a 1 kg solid block of an unknown material, as shown in Figure 3.

The immersion heater was connected to a power supply.
Figure 3

The student measured the starting temperature of the solid block. Then they turned on the power supply and started a stopwatch.

The results are shown in Table 2.
Table 2

Time in minutes	Temperature in $^{\circ} \mathrm{C}$
0	20
2	35
4	45
6	50
8	52

08.1 Plot a graph of temperature against time on Figure 4. [3 marks]

Figure 4

(I) Exam Tip

Always use crosses to plot points, and draw a line of best fit.
08.2 Describe the change in the rate of temperature increase over time. Explain your answer.
[2 marks]
08.3 After 8 minutes, the energy transferred to the block was 15800 J . Use the data in Table 2 to calculate the specific heat capacity of the block. Use the correct equation from the Physics Equations Sheet. Give your answer to three significant figures.
[3 marks]
08.4 Table 3 lists the specific heat capacity of some materials.

Table 3

Material	Specific heat capacity in $\mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$
aluminium	900
iron	452
magnesium	1020
nickel	440
zinc	390

Use Table $\mathbf{3}$ to identify which material the block is most likely to be made of.
[1 mark]

09 A teacher is showing a class a method for finding the specific latent heat of vaporisation of water. The teacher puts a kettle containing water on a set of digital scales and measures its mass.
The kettle is turned on to allow the water to boil. At the same time, the teacher turns on a stopwatch. After two minutes the kettle is turned off and the teacher notes the new reading on the scales (see Table 4).

Table 4

Mass at the start of the two minutes	1.276 kg
Mass at the end of the two minutes	1.180 kg

The power of the kettle is 2 kW .
09.1 Calculate the energy transferred from the kettle to the water.
[4 marks]
09.2 Use the correct equation from the Physics Equations Sheet to calculate the specific latent heat of vaporisation of water. Give your answer in $\mathrm{kJ} / \mathrm{kg}$.
[5 marks]
09.3 The textbook value for the specific latent heat of vaporisation of water is $2265 \mathrm{~kJ} / \mathrm{kg}$. Suggest a reason for the difference between the value that you have calculated and the textbook value.
Explain your answer.
[3 marks]
10 A student noticed that when they finished having a shower, the mirror is 'fogged up'.
10.1 Explain in terms of energy why the mirror is covered by a thin layer of water.
[3 marks]
10.2 The student estimates that the mirror is a square with sides measuring 60 cm . The density of water is $1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. The specific latent heat of vaporisation of water is $2265 \mathrm{~kJ} / \mathrm{kg}$. While the fog was forming, a total of 730 kJ of energy was transferred.
Calculate the thickness of the layer of water on the mirror. [6 marks]

Exam Tip

The first step is to write the equation down.

(I) Exam Tip

Use your answer from 08.3.

(I) Exam Tip

Make sure you use the correct equation from the Physics Equations Sheet.

11 A teacher shows data from an experiment involving heating oil and water (Figure 5).
The teacher wants to compare the liquids in terms of their specific heat capacity.

Figure 5

11.1 The teacher does not allow the students to conduct an experiment involving heating oil with a Bunsen burner. Suggest why. [1 mark]
11.2 Explain why the heater used to heat the liquids needs to have the same power.
[1 mark]
11.3 Compare the relationships between temperature and time for the liquids.
[3 marks]
11.4 Use the differences between the graphs to compare the specific heat capacity of oil and water.
[4 marks]

12 A student sees a demonstration involving gallium.
Gallium has a melting point of $29.8^{\circ} \mathrm{C}$.
A small piece of gallium melts in the palm of the demonstrator's hand.
12.1 Calculate the energy needed to raise gallium to its melting point.

Room temperature $=20^{\circ} \mathrm{C}$.
The specific heat capacity of solid gallium is $371 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$
12.2 The demonstrator uses a second piece of gallium.

It has three times the mass of the first piece of gallium.
Calculate how much energy would need to be transferred to the second piece to raise it to its melting point.
12.3 Aluminium has a greater specific heat capacity than gallium.

Describe what you would notice about the temperature rise of 5 g of aluminium if you transferred the same amount of energy as calculated in $\mathbf{1 2 . 1}$.

Explain your answer.

13 One way to heat milk is to pass steam through it.
13.1 Suggest how a jet of steam heats a cup of milk.
[2 marks]
13.2 The mass of milk in a cup is 242 g . The specific heat capacity of milk is $3.93 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$. Show that the energy required to heat the milk from $20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ is about 48 kJ . Use an equation from the Physics Equations Sheet.
[4 marks]
13.3 The specific latent heat of vaporisation of water is $2260 \mathrm{~kJ} / \mathrm{kg}$. Calculate the mass of steam that would need to condense into water to produce the energy calculated in $\mathbf{1 3 . 2}$
[4 marks]
13.4 Write down one assumption that you made when doing the calculation.
[1 mark]

14
A substance is heated. Figure 6 shows how the temperature of the substance changes with time. The straight-line sections of the graph are labelled A, B, C, D, and E.

Figure 6

14.1 Write the letters of all the sections of the graph that show a change of state.
Explain why you have chosen these sections.
[4 marks]
14.2 Did the substance start out as a solid or a liquid?

Explain your answer.
[2 marks]
14.3 Write down the section of the graph where the vibration of the particles is increasing.
[1 mark]
14.4 Write down the two sections of the graph where the kinetic energy of the particles is increasing.
[2 marks]

$+\frac{1}{2}+$

(I) Exam Tip

Look out for non-standard units!

Exam Tip

Question $\mathbf{1 4 . 1}$ is worth four marks - it gives you a clue to what the examiner is looking for and helps structure your answer:

- $1^{\text {st }}$ mark, give letter showing change of state
- $2^{\text {nd }}$ mark, explain why you chose that letter
- $3^{\text {rd }}$ mark, give letter showing second change of state
- $4^{\text {th }}$ mark, explain why you have chosen this letter

