

INTERNATIONAL A-LEVEL

COMPUTER SCIENCE

CS03
 Unit 3 Advanced Programming

Mark scheme

Specimen
 Version: 1.0 Final

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

2

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
questions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination
paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for
their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is
acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

3

How to mark

Aims

When you are marking your allocation of scripts your main aims should be to:

• recognise and identify the achievements of students

• where relevant, place students in the appropriate mark band and in the appropriate part of that mark

band (high, low, middle) for each assessment objective

• record your judgements with brief notes, annotations and comments that are relevant to the mark

scheme and make it clear to other associates how you have arrived at the numerical mark awarded for
each assessment objective

• ensure comparability of assessment for all students, regardless of question or examiner.

Approach

It is important to be open minded and positive when marking scripts.

The specification recognises the variety of experiences and knowledge that students will have. It
encourages them to study computer science in a way that is relevant to them. The questions have been
designed to give them opportunities to discuss what they have found out about computer science. It is
important to assess the quality of what the student offers.

Do not mark scripts based on the answer you would have written. The mark schemes have been
composed to assess quality of response and not to identify expected items of knowledge.

Assessment Objectives

This component requires students to:

AO1: Demonstrate knowledge and understand of the key concepts and principles of computer science.

AO2: Apply knowledge and understanding of key concepts and principles of computer science.

AO3: Analyse problems in computational terms in order to develop and test programmed solutions and
demonstrate an understanding of programming concepts.

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

4

The following annotation is used in the mark scheme.

; means a single mark

// means alternative response

/ means an alternative word or sub-phrase

A means acceptable creditworthy answer

R means reject answer as not creditworthy

NE means not enough

I means ignore

DPT in some questions a specific error made by a student, if repeated, could result in the student

failing to achieve multiple marks. The DPT label indicates that this mistake should result in a
student not achieving only one mark, on the first occasion that the error is made.

Provided that the answer remains understandable, subsequent marks should be awarded as if
the error was not being repeated.

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

5

Question Part Marking guidance Total
marks

01 1

3;

1

AO3 = 1

Question Part Marking guidance Total
marks

01 2

1 mark: Correct values in all cells that represent an edge (boxed
below).

1 mark: Suitable indicator eg 0 or negative number in cells that do
not represent an edge. R. cells empty

 To
 1 2 3 4 5

From

1 0 15 0 0 0

2 0 0 20 7 12

3 0 0 0 0 0

4 0 0 6 0 8

5 0 12 0 0 0

2

AO3 = 2

Question Part Marking guidance Total
marks

01 3

Adjacency matrix appropriate when…

• there are many edges between vertices // when graph/matrix
is not sparse // when graph is dense;

• when edges frequently changed;
• when presence/absence of specific edges needs to be

tested frequently;

A. alternative words which describe edge, eg connection, line

Max 2

2

AO3 = 2

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

6

Question Part Marking guidance Total
marks

02 1
The method by which a class operates; is hidden from other
classes;

Max 2

2

AO3 = 2

Question Part Marking guidance Total marks

02 2

Public means it can be accessed / seen outside of the class it
is in;

Protected means it can be accessed / seen in the class it is in
and in any subclasses // protected means it can be accessed /
seen in the class it is in and in any classes derived / inheriting
from it;

2

AO3 = 2

Question Part Marking guidance Total
marks

03 1

Static data structures have storage size determined at compile-time
/ before program is run / when program code is translated / before
the data structure is first used
//
dynamic data structures can grow / shrink during execution / at run-
time
//
static data structures have fixed (maximum) size // size of dynamic
data structures can change;

Static data structures can waste storage space / memory if the
number of data items stored is small relative to the size of the
structure
//
dynamic data structures only take up the amount of storage space
required for the actual data;

Dynamic data structures require (memory to store) pointers to the
next item(s) // static data structures (typically) do not need (memory
to store) pointers;

Static data structures (typically) store data in consecutive memory
locations // dynamic data structures (typically) do not store data in
consecutive memory locations;

Max 2

2

AO3 = 2

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

7

Question Part Marking guidance Total
marks

03 2

1 mark: After first iteration, value JobT and priority 3 stored in
index 4.

1 mark: After second iteration, value JobB and priority 5 stored in
index 3.

1 mark: After third iteration, value JobX and priority 7 stored in
index 2.

1 mark: Data in index 1 and index 2 not changed in any row.

Max 3 if final content of data structure not fully correct

[0] [1] [2] [3] [4] [5]

JobA JobM JobB JobT JobT

10 10 5 3 3

JobA JobM JobB JobB JobT

10 10 5 5 3

JobA JobM JobX JobB JobT

10 10 7 5 3

4

AO3 = 4

Question Part Marking guidance Total
marks

04 1

1. Suitable prompt displayed asking user to enter plaintext or key.

2. Plaintext or key input into appropriate variable.

3. Suitable prompts and input stored into appropriate variables for

both plaintext and key.

4. Array/list of strings or alternative data structure created.

A. two-dimensional array of characters

5. Array/list or alternative data structure has dynamic size or size
based on key so it always has enough rows to store the number
or rails indicated by the key.
A. size is based on message length instead of key

6. Loop that iterates through each character in the plaintext.

12

AO3 = 12

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

8

7. An individual character in the plaintext or key is accessed.

8. At least two characters in plaintext copied to different rails.
I. if copied to incorrect rails

9. At least one character copied to each rail, based on key.

I. if copied to incorrect rails

10. All characters copied to correct rails.
R. if would only work for one specific key value

11. Content of each rail concatenated together to form ciphertext.

I. contents of rails incorrect or concatenated in incorrect order

12. Ciphertext is output at end.
I. ciphertext is incorrect

Max 11 if code contains any errors

Exemplar Solutions

Python

plaintext = input("Enter Plaintext: ")
key = int(input("Enter Key: "))
rails = ["" for railno in range(key)]
rail_num = 0
direction = "up"
for pos in range(len(plaintext)):
 rails[rail_num] += plaintext[pos]
 if direction == "up":
 rail_num +=1
 if rail_num == key:
 rail_num = key - 2
 direction = "down"
 else:
 rail_num -= 1
 if rail_num == -1:
 rail_num = 1
 direction = "up"
ciphertext = ""
for pos in range(key):
 ciphertext += rails[pos]
print("Ciphertext:", ciphertext)

C#

Console.Write("Enter Plaintext: ");
string plaintext = Console.ReadLine();
Console.Write("Enter Key: ");
int key = int.Parse(Console.ReadLine());

string[] rails = new string[key];

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

9

int railNum = 0;
bool increasing = true;

for (int pos = 0; pos < plaintext.Length; pos++)
{
 rails[railNum] += plaintext[pos];
 if (increasing)
 {
 railNum++;
 if (railNum == key)
 {
 increasing = false;
 railNum -= 2;
 }
 }
 else
 {
 railNum--;
 if (railNum == -1)
 {
 increasing = true;
 railNum += 2;
 }
 }
}

string ciphertext = "";
for (railNum = 0; railNum < key; railNum++)
{
 ciphertext+= rails[railNum];
}
Console.WriteLine("Ciphertext: " + ciphertext);

VB.Net

Console.Write("Enter Plaintext: ")
Dim PlainText = Console.ReadLine()
Console.Write("Enter Key: ")
Dim Key As Integer = Console.ReadLine()

Dim Rails(Key - 1) As String
Dim RailNum = 0
Dim RailStep = 1

For Pos = 0 To PlainText.Length - 1
 Rails(RailNum) += PlainText(Pos)
 RailNum += RailStep
 If RailNum = -1 Or RailNum = Key Then
 RailStep = -RailStep
 RailNum += RailStep * 2
 End If
Next

Dim CipherText As String = ""
For RailNum = 0 To Key - 1
 CipherText += Rails(RailNum)
Next

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

10

Console.WriteLine("Ciphertext: " & CipherText)

Question Part Marking guidance Total
marks

04 2

Evidence must match code from 04.1, including prompts matching
those in code. Code for 04.1 must be sensible.

Test evidence shows:

• COMPUTER input as plaintext
• 3 input as key
• CUOPTRME output as ciphertext

Exemplar Test Results

Enter Plaintext: COMPUTER
Enter Key: 3
Ciphertext: CUOPTRME

1

AO3 = 1

Question Part Marking guidance Total
marks

05 1

1. Data structure created that can represent node labels.

I. incorrect labels represented

2. Data structure(s) created that can represent node labels and
pointers. I. incorrect labels or pointers represented

3. Correct representation of labels and pointers for tree matching

figure on question paper.

4. Subroutine that will visit at least one node in tree created and
called.

5. Subroutine calls itself.

6. Label of current node output in subroutine.

A. only output in some circumstances
I. output in incorrect place
I. output multiple times

7. Label of current node output between attempts to traverse left

and right subtrees.
I. if subtree traversal does not work
R. output multiple times

8. Check made if current node has left child.

12

AO3 = 12

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

11

9. Call to traverse left subtree if and only if node has left child and

node is passed data required to parse correct part of tree.

10. Check made if current node has right child.

11. Call to traverse right subtree if and only if node has right child
and node is passed data required to parse correct part of tree.

12. Correct result of in-order traversal displayed.

Max 11 if code contains any errors

Note that only one of mark points 8 and 10 can be awarded if,
when the subroutine is called, either the left or right subtree
could be traversed, but not both of them.

Exemplar Solutions

Python

class node:
 def __init__(self, label, left_ptr, right_ptr):
 self.label = label
 self.left_ptr = left_ptr
 self.right_ptr = right_ptr

def traverse_tree(current_index, nodes):
 if nodes[current_index].left_ptr != -1:

traverse_tree(nodes[current_index].left_ptr,
nodes)
 print(nodes[current_index].label)
 if nodes[current_index].right_ptr != -1:

traverse_tree(nodes[current_index].right_ptr,
nodes)

nodes = []
nodes.append(node("D", 1, 2))
nodes.append(node("C", 3, 4))
nodes.append(node("E", -1, 5))
nodes.append(node("A", -1, -1))
nodes.append(node("B", -1, -1))
nodes.append(node("G", 6, -1))
nodes.append(node("F", -1, -1))
root_index = 0
traverse_tree(root_index, nodes)

C#

static string[] label = { "D", "C", "E", "A", "B", "G", "F" };
static int[] leftPtr = { 1, 3, -1, -1, -1, 6, -1 };
static int[] rightPtr = { 2, 4, 5, -1, -1, -1, -1 };

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

12

static void TraverseTree(int currentIndex)
{
 if (leftPtr[currentIndex] != -1)
 TraverseTree(leftPtr[currentIndex]);
 Console.WriteLine(label[currentIndex]);
 if (rightPtr[currentIndex] != -1)
 TraverseTree(rightPtr[currentIndex]);
}

static void Main()
{
 int rootIndex = 0;
 TraverseTree(rootIndex);
 Console.ReadLine();
}

VB.Net

Structure Node
 Dim Label As String
 Dim LeftPtr As String
 Dim RightPtr As String
End Structure

Sub TraverseTree(CurrentIndex As Integer, Tree() As Node)
 If Tree(CurrentIndex).LeftPtr <> -1 Then
 TraverseTree(Tree(CurrentIndex).LeftPtr, Tree)
 End If
 Console.WriteLine(Tree(CurrentIndex).Label)
 If Tree(CurrentIndex).RightPtr <> -1 Then
 TraverseTree(Tree(CurrentIndex).RightPtr, Tree)
 End If
End Sub

Sub Main()
 Dim Tree(6) As Node
 Tree(0).Label = "D"
 Tree(0).LeftPtr = 1
 Tree(0).RightPtr = 2
 Tree(1).Label = "C"
 Tree(1).LeftPtr = 3
 Tree(1).RightPtr = 4
 Tree(2).Label = "E"
 Tree(2).LeftPtr = -1
 Tree(2).RightPtr = 5
 Tree(3).Label = "A"
 Tree(3).LeftPtr = -1
 Tree(3).RightPtr = -1
 Tree(4).Label = "B"
 Tree(4).LeftPtr = -1
 Tree(4).RightPtr = -1
 Tree(5).Label = "G"
 Tree(5).LeftPtr = 6
 Tree(5).RightPtr = -1
 Tree(6).Label = "F"
 Tree(6).LeftPtr = -1
 Tree(6).RightPtr = -1

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

13

 TraverseTree(0, Tree)
End Sub

Question Part Marking guidance Total
marks

05 2

Evidence must match code from 05.1, including prompts matching
those in code. Code for 05.1 must be sensible.

Test evidence shows correct output of in-order traversal: ABCDEFG.

Exemplar Test Results

A
C
B
D
E
F
G

1

AO3 = 1

Question Part Marking guidance Total
marks

06 1

For data structure:

1. Data structure created that can represent one student.

2. Data structure created that can represent 100 values.

I. values are not students
R. list/dynamically sized data structure created unless there is
also code to expand the size of the data structure if necessary
when a new student is added

For hash value calculation:

3. A calculation is performed to work out a hash value.

I. incorrect calculation

4. Hash calculation includes either the position in the alphabet of
the first letter in the StudentID or the last two digits in the
StudentID.

5. Hash value correctly calculated.

For AddStudent method:

6. AddStudent method created and takes StudentID,

Forename and Surname as parameters.

7. Method stores student details into data structure.

21

AO3 = 21

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

14

8. Method stores student details at row in data structure indicated

by hash value. I. incorrect hash value

9. If collision occurs, error message displayed and new data not

stored.

For LookupStudent method:

10. LookupStudent method created and takes StudentID as

parameter.

11. If record for student stored, correct details of student are
displayed.
I. StudentID is not displayed

12. Location of student record calculated using hash function. I.

incorrect hash value

13. Error message output if student details not stored.

For DeleteStudent method:

14. DeleteStudent method created and takes StudentID as

parameter.

15. If record for student stored, location in hash table marked so
that it can be reused.

For OOP program structure:

16. Hash table created as a class.

17. Instance of hash table class created.

18. Class properties are all private – must be at least one valid data

structure.

19. Methods that must be called from outside class are public, any

methods only used internally are private – must be at least one
required method. All methods that the class uses are declared
within the class.

For data stored in data structure:

20. At least two of the additions/deletions/lookups of the hash table

are made by calling the appropriate methods.
I. if code called does not work

21. All five of the additions/deletions/lookups of the hash table are

made in the correct order by calling the appropriate methods. I.
if code called does not work

The required additions/deletions/lookups are:

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

15

• Add student DH409 Peter Smith
• Add student FP789 Ibrahim Saleem
• Lookup student DH409
• Delete student DH409
• Lookup student DH409 a second time

Max 20 if code contains any errors

Exemplar Solutions

Python

class student:
 def __init__(self):
 self.student_ID = "X"
 self.forename = "X"
 self.surname = "X"

class hash_table:
 def __init__(self):
 self.__table = [student() for row in
range(100)]

 def __calculate_hash(self, student_ID):
 hash = ((ord(student_ID[0]) - 64) * 10 +
int(student_ID[3:5])) % 100
 return hash

 def add_student(self, student_ID, forename,
surname):
 hash = self.__calculate_hash(student_ID)
 if self.__table[hash].student_ID != "X":
 print("Collision")
 else:
 self.__table[hash].student_ID =
student_ID
 self.__table[hash].forename = forename
 self.__table[hash].surname = surname

 def lookup_student(self, student_ID):
 hash = self.__calculate_hash(student_ID)
 if self.__table[hash].student_ID == "X":
 print("Student does not exist")
 else:
 print("Student ID:",
self.__table[hash].student_ID)
 print("Forename:",
self.__table[hash].forename)
 print("Surname:",
self.__table[hash].surname)

 def delete_student(self, student_ID):
 hash = self.__calculate_hash(student_ID)

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

16

 self.__table[hash].student_ID = "X"
 self.__table[hash].forename = "X"
 self.__table[hash].surname = "X"

student_hash_table = hash_table()
student_hash_table.add_student("DH409","Peter","Sm
ith")
student_hash_table.add_student("FP789", "Ibrahim",
"Saleem")
student_hash_table.lookup_student("DH409")
student_hash_table.delete_student("DH409")
student_hash_table.lookup_student("DH409")

C#

class HashTable
{
 struct StudentRecord
 {
 public string studentID;
 public string forename;
 public string surname;
 }

 private StudentRecord[] table = new StudentRecord[100];

 public HashTable()
 {
 for (int row = 0; row < 100; row++)
 {
 table[row].studentID = "X";
 table[row].forename = "X";
 table[row].surname = "X";
 }
 }

 private int CalculateHash(string studentID)
 {
 int hash = (((int)studentID[0] - 64) * 10 +
Convert.ToInt32(studentID.Substring(3))) % 100;
 return hash;
 }

 public void AddStudent(string studentID, string forename,
string surname)
 {
 int row = CalculateHash(studentID);
 if (table[row].surname == "X")
 {
 table[row].studentID = studentID;
 table[row].forename = forename;
 table[row].surname = surname;
 }
 else
 {
 Console.WriteLine("Collision");
 }

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

17

 }

 public void LookupStudent(string studentID)
 {
 int row = CalculateHash(studentID);
 if (table[row].surname == "X")
 {
 Console.WriteLine("Student does not exist");
 }
 else
 {
 Console.WriteLine("Student ID: " +
table[row].studentID);
 Console.WriteLine("Forename: " +
table[row].forename);
 Console.WriteLine("Surname: " +
table[row].surname);
 }
 }

 public void DeleteStudent(string studentID)
 {
 int row = CalculateHash(studentID);
 table[row].studentID = "X";
 table[row].forename = "X";
 table[row].surname = "X";
 }
}

class Program
{
 static void Main()
 {
 HashTable studentHashTable = new HashTable();
 studentHashTable.AddStudent("DH409", "Peter", "Smith");
 studentHashTable.AddStudent("FP789", "Ibrahim",
"Saleem");
 studentHashTable.LookupStudent("DH409");
 studentHashTable.DeleteStudent("DH409");
 studentHashTable.LookupStudent("DH409");
 Console.ReadLine();
 }
}

VB.Net

Class HashTable
 Private StudentRecord(99, 2) As String
 Sub New()
 For Row = 0 To 99
 For Col = 0 To 2
 StudentRecord(Row, Col) = ""
 Next
 Next
 End Sub

 Private Function CalculateHash(StudentID As String) As
Integer

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

18

 Dim Hash = ((Convert.ToByte(StudentID(0)) - 64) * 10 +
Convert.ToInt32(StudentID.Substring(3))) Mod 100
 Return Hash
 End Function

 Public Sub AddStudent(StudentID As String, Forename As
String, Surname As String)
 Dim Row = CalculateHash(StudentID)
 If StudentRecord(Row, 0) = "" Then
 StudentRecord(Row, 0) = StudentID
 StudentRecord(Row, 1) = Forename
 StudentRecord(Row, 2) = Surname
 Else
 Console.WriteLine("Collision")
 End If
 End Sub

 Public Sub LookUpStudent(StudentID As String)
 Dim Row = CalculateHash(StudentID)
 If StudentRecord(Row, 0) = "" Then
 Console.WriteLine("Student does not exist")
 Else
 Console.WriteLine("Student ID: " &
StudentRecord(Row, 0))
 Console.WriteLine("Forename: " & StudentRecord(Row,
1))
 Console.WriteLine("Surname: " & StudentRecord(Row,
2))
 End If
 End Sub

 Public Sub DeleteStudent(StudentID As String)
 Dim Row = CalculateHash(StudentID)
 StudentRecord(Row, 0) = ""
 StudentRecord(Row, 1) = ""
 StudentRecord(Row, 2) = ""
 End Sub

End Class

Sub Main()
 Dim StudentHashTable As HashTable = New HashTable()
 StudentHashTable.AddStudent("DH409", "Peter", "Smith")
 StudentHashTable.AddStudent("FP789", "Ibrahim", "Saleem")
 StudentHashTable.LookUpStudent("DH409")
 StudentHashTable.DeleteStudent("DH409")
 StudentHashTable.LookUpStudent("DH409")
 Console.ReadLine()
End Sub

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

19

Question Part Marking guidance Total
marks

06 2

Evidence must match code from 06.1, including prompts matching
those in code. Code for 06.1 must be sensible.

Test evidence shows:

• error message indicating collision has occurred
• details of student Peter Smith displayed
• error message indicating student does not exist.

Exemplar Test Results

Collision
Student ID: DH409
Forename: Peter
Surname: Smith
Student does not exist

1

AO3 = 1

Question Part Marking guidance Total
marks

07

1

For data representation

1. Suitable data structure created to store representation of board.

2. Variable created to represent which player’s turn it is.

For column input:

3. Suitable prompt asking user to input column to drop counter into

displayed and input assigned to appropriate variable.

4. Check if column valid/invalid.

NE. only one boundary checked

5. Check if column is already full.

6. Error message displayed or re-entry required if either column
invalid or column already full.
I. check is only partially correct eg only checks if too high not too
low

7. Error message displayed and re-entry required if either column

invalid or column already full.

For counter placement:

8. Counter stored in correct column in data structure, based on

user input.

26

AO3 = 26

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

20

9. Attempt to identify correct row to store counter in, eg using loop
or storing column heights.

10. Counter stored in correct row in data structure, based on user

input and counters already placed in column.
R. counter placed in more than one row

For board display:

11. Loop iterates through rows.

12. Loop iterates through columns.

13. Correct display of board, based on contents of data structure. I.

contents of data structure incorrect

For winner identification and game termination:

14. Check for row of three in horizontal direction in at least one

location on board.

15. Any valid winning row correctly identified.
R. check would sometimes go outside of array bounds

16. Check for column of three in horizontal direction in at least one

location on board.

17. Any valid winning column correctly identified.
R. check would sometimes go outside of array bounds

18. Suitable message output when program identifies winner.

I. if the conditions used to identify a winner are not correct

For basic gameplay:

19. Loop used to give repeated turns at playing game.

20. For each turn, the board is displayed, the user is able to select
the column for a counter and the counter is placed in the
column.

21. The player dropping a counter alternates between turns.

22. Game terminates when there is a winner OR game terminates

when board is full.

For program structure:

23. At least one user-defined subroutine created and called, which

has an appropriate meaningful name.

24. Appropriate overall division of program into subroutines.
Note: Must be at least three programmer-created subroutines

25. No repetition of code to achieve the same purpose in more than

one place. For example, code to display board is not duplicated,

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

21

code to play game and test for a winner is not duplicated for both
players.
Note: Some attempt must have been made to write code for
both players to award this mark

26. No use of global variables, all values passed between

subroutines using parameters and return values.

Max 25 if code contains any errors

Exemplar Solutions

Python

def display_board(board):
 for row in range (4, -1, -1):
 for col in range(6):
 print(board[row][col], end="")
 print()

def enter_column(rows_used):
 repeat = True
 while repeat:
 col = int(input("Select column: "))
 if col < 0 or col > 5:
 print("Invalid column")
 elif rows_used[col] == 5:

• print("Column full")
 else:
 repeat = False
 return col

def check_winner(board, row, col, player_one_turn):
 winner = False
 if player_one_turn:
 symbol = '1'
 else:
 symbol = '2'
 try:
 if board[row][col] == symbol and board[row +
1][col] == symbol and board[row + 2][col] == symbol:
 winner = True
 except:
 pass
 try:
 if board[row - 1][col] == symbol and
board[row][col] == symbol and board[row + 1][col] ==
symbol:
 winner = True
 except:
 pass
 try:
 if board[row - 2][col] == symbol and board[row
- 1][col] == symbol and board[row][col] == symbol:

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

22

 winner = True
 except:
 pass
 try:
 if board[row][col] == symbol and board[row][col
+ 1] == symbol and board[row][col + 2] == symbol:
 winner = True
 except:
 pass
 try:
 if board[row][col - 1] == symbol and
board[row][col] == symbol and board[row][col + 1] ==
symbol:
 winner = True
 except:
 pass
 try:
 if board[row][col - 2] == symbol and
board[row][col - 1] == symbol and board[row][col] ==
symbol:
 winner = True
 except:
 pass
 return winner

board = [[' ' for col in range(6)] for row in range(5)]
rows_used = [0 for col in range(6)]
game_over = False
player_one_turn = True
while game_over == False:
 display_board(board)
 col = enter_column(rows_used)
 row = rows_used[col]
 if player_one_turn:
 board[row][col] = '1'
 else:
 board[row][col] = '2'
 rows_used[col] += 1
 winner = check_winner(board, row, col,
player_one_turn)
 if winner:
 display_board(board)
 print("Game won")
 game_over = True
 if sum(rows_used) == 6 * 5:
 display_board(board)
 game_over = True
 player_one_turn = not player_one_turn

C#

static void DisplayBoard(int[,] board)
{
 for (int row = 4; row >= 0; row--)

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

23

 {
 for (int col = 0; col < 6; col++)
 {
 if (board[row, col] == 0) Console.Write(" ");
 else Console.Write(board[row, col] + " ");
 }
 Console.WriteLine();
 }
}

static int FindFreeRow(int col, int[,] board)
{
 int row = 0;
 if (board[4, col] > 0) return -1;
 else
 {
 while (board[row, col] != 0) row++;
 }
 return row;
}

static int InputColumn(int[,] board)
{
 int col;
 int freeRow;
 bool repeat;
 do
 {
 repeat = false;
 Console.Write("Select column: ");
 col = int.Parse(Console.ReadLine());
 if (col < 0 || col > 5)
 {
 Console.WriteLine("Invalid column");
 repeat = true;
 }
 else
 {
 freeRow = FindFreeRow(col, board);
 if (freeRow == -1)
 {
 Console.WriteLine("Column full");
 repeat = true;
 }
 Console.WriteLine(freeRow);
 }
 } while (repeat);
 return col;
}

static bool CheckWinner(int[,] board)
{
 bool win = false;
 for (int row = 0; row <= 4; row++)
 {
 for (int col = 0; col <= 3; col++)
 {

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

24

 if (board[row, col] == board[row, col + 1] &&
board[row, col] == board[row, col + 2] && board[row, col] > 0)
 {
 win = true;
 }
 }
 }
 for (int row = 0; row <= 2; row++)
 {
 for (int col = 0; col <= 5; col++)
 {
 if (board[row, col] == board[row + 1, col] &&
board[row, col] == board[row + 2, col] && board[row, col] > 0)
 {
 win = true;
 }
 }
 }
 if (win) Console.WriteLine("Game has been won");
 return win;
}

static void Main()
{
 int[,] board = new int[5, 6];
 int player = 1;
 int turns = 0;
 do
 {
 DisplayBoard(board);
 int col = InputColumn(board);
 int row = FindFreeRow(col, board);
 board[row, col] = player;
 player = 3 - player;
 turns++;
 } while (!CheckWinner(board) && turns < 5 * 6);
 DisplayBoard(board);
 Console.ReadLine();
}

VB.Net

Sub DisplayBoard(Board(,) As Char)
 For Row = 4 To 0 Step -1
 For Col = 0 To 5
 Console.Write(Board(Row, Col) & " ")
 Next
 Console.WriteLine()
 Next
End Sub

Function FindFreeRow(Col As Integer, Board(,) As Char) As
Integer
 Dim Row As Integer = -1
 Do
 Row += 1
 Loop Until Row = 4 Or Board(Row, Col) = " "

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

25

 If Board(Row, Col) = " " Then
 Return Row
 Else
 Return 99
 End If
End Function

Function InputColumn() As Integer
 Dim Col As Integer
 Do
 Console.Write("Select column: ")
 Col = Console.ReadLine()
 If Col < 0 Or Col > 5 Then
 Console.WriteLine("Invalid Column")
 End If
 Loop Until Col >= 0 And Col <= 5
 Return Col
End Function

Function CheckWinner(Board(,) As Char) As Boolean
 Dim Win As Boolean = False
 For Row = 0 To 4
 For Col = 0 To 3
 If Board(Row, Col) = Board(Row, Col + 1) And
Board(Row, Col) = Board(Row, Col + 2) And Board(Row, Col) <> "
" Then
 Win = True
 End If
 Next
 Next
 For Row = 0 To 2
 For Col = 0 To 5
 If Board(Row, Col) = Board(Row + 1, Col) And
Board(Row, Col) = Board(Row + 2, Col) And Board(Row, Col) <> "
" Then
 Win = True
 End If
 Next
 Next
 If Win Then Console.WriteLine("Game has been won")
 Return Win
End Function

Sub ResetBoard(Board(,) As Char)
 For Row = 0 To 4
 For Col = 0 To 5
 Board(Row, Col) = " "
 Next
 Next
End Sub

Sub Main()
 Dim Board(4, 5) As Char
 ResetBoard(Board)
 Dim Player As Char = "1"
 Dim Turns As Integer = 0
 Do
 DisplayBoard(Board)

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

26

 Dim Col As Integer
 Dim Row As Integer
 Do
 Col = InputColumn()
 Row = FindFreeRow(Col, Board)
 If Row = 99 Then
 Console.WriteLine("Column full")
 End If
 Loop Until Row <> 99
 Board(Row, Col) = Player
 If Player = "1" Then
 Player = "2"
 Else
 Player = "1"
 End If
 Turns += 1
 Loop Until CheckWinner(Board) Or Turns = 5 * 6
 DisplayBoard(Board)
 Console.ReadLine()
End Sub

MARK SCHEME – INTERNATIONAL A-LEVEL COMPUTER SCIENCE – CS03 – SPECIMEN

27

Question Part Marking guidance Total
marks

07 2

Evidence must match code from 07.1, including prompts matching
those in code. Code for 07.1 must be sensible.

Test evidence shows game played until there is a winner.

Exemplar Test Results

Select column: 0

1
Select column: 1

12
Select column: 0

1
12
Select column: 1

12
12
Select column: 0

1
12
12
Game won

1

AO3 = 1

