

INTERNATIONAL AS

COMPUTER SCIENCE

CS01
 Paper 1 Programming

Mark scheme

Specimen
 Version: 1.0 Final

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

2

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
questions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination
paper.

Further copies of this mark scheme are available from oxfordaqaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for
their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is
acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

3

How to mark

Aims

When you are marking your allocation of scripts your main aims should be to:

• recognise and identify the achievements of students

• where relevant, place students in the appropriate mark band and in the appropriate part of that mark

band (high, low, middle) for each assessment objective

• record your judgements with brief notes, annotations and comments that are relevant to the mark

scheme and make it clear to other associates how you have arrived at the numerical mark awarded for
each assessment objective

• ensure comparability of assessment for all students, regardless of question or examiner.

Approach

It is important to be open minded and positive when marking scripts.

The specification recognises the variety of experiences and knowledge that students will have. It
encourages them to study computer science in a way that is relevant to them. The questions have been
designed to give them opportunities to discuss what they have found out about computer science. It is
important to assess the quality of what the student offers.

Do not mark scripts based on the answer you would have written. The mark schemes have been
composed to assess quality of response and not to identify expected items of knowledge.

Assessment Objectives

This component requires students to:

AO1: Demonstrate knowledge and understand of the key concepts and principles of computer science.

AO2: Apply knowledge and understanding of key concepts and principles of computer science.

AO3: Analyse problems in computational terms in order to develop and test programmed solutions and
demonstrate an understanding of programming concepts.

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

4

The following annotation is used in the mark scheme.

; means a single mark

// means alternative response

/ means an alternative word or sub-phrase

A means acceptable creditworthy answer

R means reject answer as not creditworthy

NE means not enough

I means ignore

DPT in some questions a specific error made by a student, if repeated, could result in the student

failing to achieve multiple marks. The DPT label indicates that this mistake should result in a
student not achieving only one mark, on the first occasion that the error is made.

Provided that the answer remains understandable, subsequent marks should be awarded as if
the error was not being repeated.

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

5

Question Part Marking guidance Total
marks

01 1

Item Code;

I. missing space, minor misspelling

1

AO3 = 1

Question Part Marking guidance Total
marks

01 2
Total;

I. minor misspelling

1

AO3 = 1

Question Part Marking guidance Total
marks

01 3

A loop // code is repeated;

1

AO3 = 1

Question Part Marking guidance Total
marks

02

Problem definition;
Requirements specification // list of objectives;
Feedback about requirements specification from end user;
Data model / ER diagram;
Analysis data dictionary;
Interviews;
Questionnaires;
Observations;
Examination of documents;
Research existing solutions;
Acceptable limitations / constraints;

Max 2

2

AO3 = 2

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

6

Question Part Marking guidance Total
marks

03 1

numstr result val position
10111 0 1 4

 1 2 3
 3 4 2
 7 8 1
 16 0
 23 32 -1

1 mark: numstr initialised to 10111, result initialised to 0, val
initialised to 1, position initialised to 4
1 mark: result changes to 1, val changes to 2, position
changes to 3
1 mark: result changes to 3 then 7, val changes to 4 then 8,
position changes to 2 then 1
1 mark: result changes to 23, val changes to 16 then 32,
position changes to 0 then -1

Max 3 if any incorrect values in table

4

AO3 = 4

Question Part Marking guidance Total
marks

03 2

Converts a (binary) number to decimal / denary;

1

AO3 = 1

Question Part Marking guidance Total
marks

04

Mark against whichever method gives the highest mark.

Method 1
1. Check the queue is not already full;
2. Compare the value of the (rear) pointer with the maximum size of
the array;
3. If equal then (rear) pointer becomes zero; A. index of the first
position in the array instead of zero
4. Otherwise, add one to the (rear) pointer;
5. Insert new item in position indicated by (rear) pointer;

Method 2
1. Check the queue is not already full;

5

AO3 = 5

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

7

2. Compare the value of the (rear) pointer with the maximum size of
the array minus one;
3. If equal then (rear) pointer becomes one; A. index of the first
position in the array instead of one
4. Otherwise, add one to the (rear) pointer;
5. Insert new item in position indicated by (rear) pointer;

Method 3
1. Check the queue is not already full;
2. Add one to the (rear) pointer;
3. Compare the value of the (rear) pointer with the maximum size of
the array;
4. If equal then (rear) pointer becomes zero; A. index of the first
position in the array instead of zero
5. Insert new item in position indicated by (rear) pointer;

Method 4
1. Check the queue is not already full;
2. Add one to the (rear) pointer;
3. Compare the value of the (rear) pointer with the maximum size of
the array plus one;
4. If equal then (rear) pointer becomes one; A. index of the first
position in the array instead of one
5. Insert new item in position indicated by (rear) pointer;

Method 5
1. Check the queue is not already full;
2. Add one to the (rear) pointer;
3. Use modulus/modulo operator/function with new value of (rear)
pointer;
4. Use modulus/modulo operator/function with maximum size of
array;
5. Insert new item in position indicated by (rear) pointer;

Max 4 if any errors

Question Part Marking guidance Total
marks

05 1

1. Suitable prompt asking user to enter the test score.

2. User input assigned to appropriate variable.

3. Use of selection structure.

4. One of the four levels (distinction, merit, pass, fail) output under

the correct circumstances.

5. All four of the levels output under the correct circumstances.

8

AO3 = 8

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

8

6. At least one correct condition to detect an invalid percentage
and error message displayed. I. message does not match
question paper

7. User required to re-enter score if entered percentage is invalid

(must work for both below and above 0).

8. Error message displayed if user input is not a number or user

required to re-enter score if not a number. I. message does not
match question paper

Max 7 if code contains any errors

Exemplar Solutions

Python

valid = False
while valid == False:
 try:
 score = int(input("Enter percentage score: "))
 if score < 0 or score > 100:
 print("Invalid percentage")
 else:
 valid = True
 except:
 print("Not a number")
if score >= 80:
 print("Distinction")
elif score >= 60:
 print("Merit")
elif score >= 40:
 print("Pass")
else:
 print("Fail")

C#

int score;
bool valid;
do
{
 Console.Write("Enter percentage score: ");
 valid = int.TryParse(Console.ReadLine(), out score);
 if (!valid)
 {
 Console.WriteLine("Not a number");
 }
 else if (score < 0 || score > 100)
 {
 Console.WriteLine("Invalid percentage");
 valid = false;
 }
} while (!valid);
if (score >= 80) Console.WriteLine("Distinction");
else if (score >= 60) Console.WriteLine("Merit");
else if (score >= 40) Console.WriteLine("Pass");
else Console.WriteLine("Fail");

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

9

VB.Net

Dim Score As Integer
Do
 Console.Write("Enter percentage score: ")
Try
 Score = Convert.ToInt32(Console.ReadLine())
 If Score < 0 Or Score > 100 Then
 Console.WriteLine("Invalid percentage")
 End If
Catch
 Console.WriteLine("Not a number")
 Score = -1
End Try
Loop Until Score >= 0 And Score <= 100
If Score < 40 Then
 Console.WriteLine("Fail")
ElseIf Score < 60 Then
 Console.WriteLine("Pass")
ElseIf Score < 80 Then
 Console.WriteLine("Merit")
Else
 Console.WriteLine("Distinction")
End If

Question Part Marking guidance Total
marks

05 2

Evidence must match code from 05.1, including prompts matching
those in code. Code for 05.1 must be sensible.

Test evidence shows:

• 84 input and Distinction output
• 60 input and Merit output
• 120 input and message output to say percentage invalid or

user forced to re-input score. I. if message does not match
question paper as long as it matches 05.1

• Hippo input and message output to say not a number or
user forced to re-input score. I. if message does not match
question paper as long as it matches 05.1

Exemplar Test Results

Enter percentage score: 84
Distinction
>>>
== RESTART: testscore.py ==
Enter percentage score: 60
Merit
>>>
== RESTART: testscore.py ==
Enter percentage score: 120

1

AO3 = 1

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

10

Invalid percentage
Enter percentage score: Hippo
Not a number

Question Part Marking guidance Total
marks

06 1

1. Suitable prompts asking user to enter forename and surname of

student and these values assigned to appropriate variables. I.
order these are input in

2. Use of a method such as character indexing or substring to
isolate at least one character.

3. First two letters of forename isolated.

4. First and last letters of surname isolated.

5. A random number is generated.

6. Random number is in correct range.

7. Program displays an identity code and stores it in the variable

idcode. I. minor misspellings of idcode I. if the identity code
is correct or not

8. Program always either displays or stores a valid identity code for

the entered forename and surname.

DPT. mixing up forename and surname

Max 7 if code contains any errors

Exemplar Solutions

Python

import random
forename = input("Enter forename: ")
surname = input("Enter surname: ")
idcode = forename[0] + forename[1] +
surname[0] + surname[(len(surname) - 1)]
number = random.randint(100,999)
idcode = idcode + str(number)
print(idcode)

C#

Console.Write("Enter forename: ");
string forename = Console.ReadLine();

8

AO3 = 8

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

11

Console.Write("Enter surname: ");
string surname = Console.ReadLine();
string idcode = forename.Substring(0, 2) + surname[0] +
surname[surname.Length - 1];
Random stream = new Random();
idcode += stream.Next(100, 1000).ToString();
Console.WriteLine(idcode);

VB.Net

Console.Write("Enter forename: ")
Dim Forename As String = Console.ReadLine()
Console.Write("Enter surname: ")
Dim Surname As String = Console.ReadLine()
Dim IDCode As String = Forename.Substring(0, 2) + Surname(0) +
Surname(Surname.Length - 1)
Dim Stream As Random = New Random()
Dim Number As Integer = Stream.Next(100, 1000)
IDCode = IDCode + Number.ToString
Console.WriteLine(IDCode)

Question Part Marking guidance Total
marks

06 2

Evidence must match code from 06.1, including prompts matching
those in code. Code for 06.1 must be sensible.

Test evidence shows:

• DYLAN and WINSER input
• A seven-character identity code output that starts with DYWR

and ends with a three-digit number.

Exemplar Test Results

Enter forename: DYLAN
Enter surname: WINSER
DYWR440

1

AO3 = 1

Question Part Marking guidance Total
marks

07

1

1. Suitable data structure created to store English or Spanish

words.

2. Suitable data structure(s) created to store both English and
Spanish words and correct values stored in them. I. minor
spelling errors

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

12

07

1

3. Suitable prompt asking user to input an English word and this
word assigned to an appropriate variable.

4. Corresponding Spanish word found and displayed, if in list.

5. Message displayed to indicate word not in list, if it is not. I.

message does not match question paper.

The following mark points should only be awarded if the binary
search method is used:

6. Use of variables to indicate both start and end of region currently

being searched. I. if incorrect values stored

7. Start and end of region variables assigned correct initial values.

8. Middle of region correctly calculated for odd and even length

regions.

9. Comparison made between value at calculated middle of list and

English word entered. I. if middle incorrectly calculated

10. Variable storing start of search region updated to value of
middle + 1 or middle if English word being searched for is
after the middle of the region. I. if middle incorrectly calculated

11. Variable storing end of search region updated to value of

middle - 1 or middle if English word being searched for is
before the middle of the region. I. if middle incorrectly calculated

Max 10 if code contains any errors

Exemplar Solutions

Python

dictionary = [["apple", "manzana"],
 ["cat", "gato"],
 ["food", "alimento"],
 ["moon", "luna"],
 ["paint", "pintar"],
 ["school", "escuela"],
 ["water", "agua"]]
searchword = input("English word: ")
start = 0
end = len(dictionary) - 1
finished = False
while finished == False:
 middle = (start + end) // 2
 if dictionary[middle][0] == searchword:
 print("The Spanish word is",
dictionary[middle][1])
 finished = True

11

AO3 = 11

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

13

 elif dictionary[middle][0] > searchword:
 end = middle - 1
 else:
 start = middle + 1
 if end < start:
 print("Word not known")
 finished = True

C#

string[,] dictionary = { { "apple", "manzana" },
 { "cat", "gato" },
 { "food", "alimento" },
 { "moon", "luna" },
 { "paint", "pintar" },
 { "school", "escuela" },
 { "water", "agua" } };
Console.Write("English word: ");
string searchWord = Console.ReadLine();
int start = 0;
int end = dictionary.Length - 1;
bool finished = false;
while (finished == false)
{
 int middle = (start + end) / 2;
 if (dictionary[middle, 0] == searchWord)
 {
 Console.WriteLine("The Spanish word is " +
dictionary[middle, 1]);
 finished = true;
 }
 else if (string.Compare(dictionary[middle, 0], searchWord)
> 0)
 {
 end = middle - 1;
 }
 else
 {
 start = middle + 1;
 }
 if (end < start)
 {
 Console.WriteLine("Word not known");
 finished = true;
 }
}

VB.Net

Structure WordPair
 Dim English As String
 Dim Spanish As String
End Structure

Sub Main()
 Dim Dictionary() As WordPair = New WordPair(6) {}

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

14

 Dictionary(0).English = "apple"
 Dictionary(0).Spanish = "manzana"
 Dictionary(1).English = "cat"
 Dictionary(1).Spanish = "gato"
 Dictionary(2).English = "food"
 Dictionary(2).Spanish = "alimento"
 Dictionary(3).English = "moon"
 Dictionary(3).Spanish = "luna"
 Dictionary(4).English = "paint"
 Dictionary(4).Spanish = "pintar"
 Dictionary(5).English = "school"
 Dictionary(5).Spanish = "escuela"
 Dictionary(6).English = "water"
 Dictionary(6).Spanish = "aqua"
 Console.Write("English word: ")
 Dim SearchWord As String = Console.ReadLine()
 Dim ListStart As Integer = 0
 Dim ListEnd As Integer = Dictionary.Length - 1
 Dim Middle As Integer
 Dim Found As Boolean = False
 Do
 Middle = (ListStart + ListEnd) \ 2
 If Dictionary(Middle).English > SearchWord Then
 ListEnd = Middle - 1
 ElseIf Dictionary(Middle).English < SearchWord Then
 ListStart = Middle + 1
 Else
 Found = True
 End If
 Loop Until ListEnd < ListStart Or Found
 If Found Then
 Console.WriteLine("The Spanish word is " &
Dictionary(Middle).Spanish)
 Else
 Console.WriteLine("Word not known")
 End If
End Sub

Question Part Marking guidance Total
marks

07 2

Evidence must match code from 07.1, including prompts matching
those in code. Code for 07.1 must be sensible.

Test evidence shows:

• moon input and luna output
• cat input and gato output
• paint input and pintar output
• ball input and message indicating word not known output.

I. if message does not match question paper as long as it
matches 07.1

1

AO3 = 1

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

15

Exemplar Test Results

English word: moon
The spanish word is luna
>>>
= RESTART: binarysearch.py
English word: cat
The spanish word is gato
>>>
= RESTART: binarysearch.py
English word: paint
The spanish word is pintar
>>>
= RESTART: binarysearch.py
English word: ball
Word not found

Question Part Marking guidance Total
marks

08 1

1. Suitable prompts asking user to enter the number of numbers in

the list followed by user input being assigned to appropriate
variable. R. if inside or after iterative structure

2. Use of loop that repeats a number of times determined by the

first number entered by the user.

3. Correct number of numbers obtained from the user.

4. Use of appropriate data structure(s) to store frequencies.

5. Adds one to correct frequency count for first number input.

6. Data structure stores correct frequencies of all numbers input.

7. Selection structure, inside iterative structure, that correctly

compares calculated frequency (I. incorrect frequency) of a
number with the lowest frequency found so far.

8. Use of loop and selection structure or function such as count

to attempt to identify if there is more than one least-frequent
number.

9. Selection structure that either outputs a calculated number (I.

incorrectly calculated) or a message saying "More than one
least-frequent number ". A. any suitable message

10. Program outputs the correct least-frequent number. I. if done

when there is more than one least-frequent number

11. Program outputs the correct least-frequent number count. I. if
done when there is more than one least-frequent number

12

AO3 = 12

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

16

12. Program displays message to indicate that there is more than

one least-frequent number if and only if this is the case.

Max 11 if code contains any errors

Exemplar Solutions

Python

list_len = int(input("How many items in list? "))
num_count = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
for i in range(list_len):
 num = int(input("Type a number: "))
 num_count[num] = num_count[num] + 1

least_count = max(num_count)
for i in range(10):
 if num_count[i] <= least_count and num_count[i] > 0:
 least_count = num_count[i]
 least_pos = i

num_leasts = num_count.count(least_count)
if num_leasts == 1:
 print("Least:", least_pos)
 print("Count:", least_count)
else:
 print("More than one least-frequent number")

C#

Console.Write("How many items in list? ");
int listLen = int.Parse(Console.ReadLine());
int[] numCount = new int[10];
for (int i = 0; i < listLen; i++)
{
 Console.Write("Type a number: ");
 int num = int.Parse(Console.ReadLine());
 numCount[num] += 1;
}

int leastCount = int.MaxValue;
int leastPos = -1;
bool multiple = false;
for (int i = 0; i < 10; i++)
{
 if (numCount[i] < leastCount && numCount[i] > 0)
 {
 leastCount = numCount[i];
 leastPos = i;
 multiple = false;
 }
 else if (numCount[i] == leastCount)
 {
 multiple = true;

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

17

 }
}

if (multiple)
{
 Console.WriteLine("More than one least-frequent number");
}
else
{
 Console.WriteLine("Least: " + leastPos);
 Console.WriteLine("Count: " + leastCount);
}

VB.Net

Console.Write("How many items in list? ")
Dim ListLen As Integer = Convert.ToInt32(Console.ReadLine())
Dim NumCount As New List(Of Integer)({0, 0, 0, 0, 0, 0, 0, 0,
0, 0})
For i = 1 To ListLen
 Console.Write("Type a number: ")
 Dim Num As Integer = Convert.ToInt32(Console.ReadLine())
 NumCount(Num) += 1
Next

Dim LeastCount = 10000
Dim LeastPos = -1
For i = 0 To 9
 If NumCount(i) <= LeastCount And NumCount(i) > 0 Then
 LeastCount = NumCount(i)
 LeastPos = i
 End If
Next

If NumCount.IndexOf(LeastCount) =
NumCount.LastIndexOf(LeastCount) Then
 Console.WriteLine("Least:" & LeastPos)
 Console.WriteLine("Count:" & LeastCount)
Else
 Console.WriteLine("More than one least-frequent number")
End If

Question Part Marking guidance Total
marks

08 2

Evidence must match code from 08.1, including prompts matching
those in code. Code for 08.1 must be sensible.

Test evidence shows:

• the number 6 being entered followed by the numbers 5, 3, 4,
5, 4, 5 (I. order of these six numbers) and then a message
displayed saying 3 is the least-frequent number with a count
of 1

1

AO3 = 1

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

18

• the number 7 being entered followed by the numbers 8, 2, 2,
7, 8, 7, 8 (I. order of these seven numbers) and then a
message displayed saying that there is more than one least-
frequent number (I. if message does not match question
paper as long as it matches 09.1, I. if numbers also
displayed).

Exemplar Test Results

How many items in list? 6
Type a number: 5
Type a number: 3
Type a number: 4
Type a number: 5
Type a number: 4
Type a number: 5
Least: 3
Count: 1
>>>
= RESTART: leastfrequent.py
How many items in list? 7
Type a number: 8
Type a number: 2
Type a number: 2
Type a number: 7
Type a number: 8
Type a number: 7
Type a number: 8
More than one least-frequent number

Question Part Marking guidance Total
marks

09 1

For the menu and key:

1. Menu displayed containing all four / five options. I. order or

options

2. User input of option to execute and selection statement uses
user input to determine block of code to run. I. not all options
implemented

3. Loop repeatedly displays menu and executes selected option

until exit option chosen by user, at which point program
terminates.

4. Key value input and stored in a variable.

For one of encryption or decryption:

5. Loop iterates through each character in plaintext or ciphertext.

15

AO3 = 15

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

19

6. Program attempts to move at least one character backward or
forwards in alphabet.

7. Program correctly moves all characters along alphabet the
number of places indicated by the key – forward for encryption
or backward for decryption. I. if does not work for letters that
would wrap around at start/end of alphabet

8. Wrapping of letters around start or end of alphabet works
correctly.

For the other one of encryption or decryption:

9. Program correctly moves all characters along alphabet the

number of places indicated by the key – forward for encryption
or backward for decryption. I. if does not work for letters that
would wrap around at start/end of alphabet

10. Wrapping of letters around start or end of alphabet works

correctly.

For cracking:

11. Loop iterates correctly through key values 1 to 25.

12. For each key value the correct plaintext is displayed. I. key

values iterated through are incorrect

For program structure:

13. At least one user-created subroutine created and called, which

has an appropriate meaningful name.

14. Subroutines created for all program options that the solution

tackles (must be at least two subroutines).

15. Key is returned from subroutine that inputs it and passed as a
parameter to other subroutines that use the key. Global
variables are not used.

Max 14 if code contains any errors

Exemplar Solutions

Python

def input_key():
 key = int(input("Enter the key: "))
 return key

def encrypt_message(key):
 plaintext = input("Enter the message to
encrypt: ")
 ciphertext = ""

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

20

 for pos in range(len(plaintext)):
 letter_code = ord(plaintext[pos])
 letter_code += key
 if letter_code > ord('Z'):
 letter_code -= 26;
 ciphertext += chr(letter_code)
 print("The encrypted message is", ciphertext)

def decrypt_message(key):
 ciphertext = input("Enter the message to
decrypt: ")
 plaintext = ""
 for pos in range(len(ciphertext)):
 letter_code = ord(ciphertext[pos])
 letter_code -= key
 if letter_code < ord('A') :
 letter_code += 26;
 plaintext += chr(letter_code)
 print("The decrypted message is", plaintext)

def crack_message():
 ciphertext = input("Enter the message to
decrypt: ")
 for key in range(1, 26):
 plaintext = ""
 for pos in range(len(ciphertext)):
 letter_code = ord(ciphertext[pos])
 letter_code -= key
 if letter_code < ord('A') :
 letter_code += 26;
 plaintext += chr(letter_code)
 print("Possible plaintext", key,
plaintext)

option = 0
while option != 5:
 print("1. Input key")
 print("2. Encrypt message")
 print("3. Decrypt message")
 print("4. Crack message")
 print("5. Exit")
 option = int(input("Select option: "))
 if option == 1:
 key = input_key()
 elif option == 2:
 encrypt_message(key)
 elif option == 3:
 decrypt_message(key)
 elif option == 4:
 crack_message()

C#

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

21

class Program
{
 static int InputKey()
 {
 Console.Write("Enter the key: ");
 int key = int.Parse(Console.ReadLine());
 return key;
 }

 static void EncryptMessage(int key)
 {
 Console.Write("Enter the message to encrypt: ");
 string plainText = Console.ReadLine();
 string cipherText = "";
 for (int pos = 0; pos < plainText.Length; pos++)
 {
 int letterCode = plainText[pos];
 letterCode += key;
 if (letterCode > 90) letterCode -= 26;
 cipherText += (char)letterCode;
 }
 Console.WriteLine("The encrypted message is " +
cipherText);
 }

 static void DecryptMessage(int key)
 {
 Console.Write("Enter the message to decrypt: ");
 string cipherText = Console.ReadLine();
 string plainText = "";
 for (int pos = 0; pos < cipherText.Length; pos++)
 {
 int letterCode = cipherText[pos];
 letterCode -= key;
 if (letterCode < 65) letterCode += 26;
 plainText += (char)letterCode;
 }
 Console.WriteLine("The decrypted message is " +
plainText);
 }

 static void CrackMessage()
 {
 Console.Write("Enter the message to decrypt: ");
 string cipherText = Console.ReadLine();
 for (int key = 1; key < 26; key++)
 {
 string plainText = "";
 for (int pos = 0; pos < cipherText.Length; pos++)
 {
 int letterCode = cipherText[pos];
 letterCode -= key;
 if (letterCode < 65) letterCode += 26;
 plainText += (char)letterCode;
 }
 Console.WriteLine("Possible plaintext " + key + " " +
plainText);
 }

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

22

 }

 static void Main(string[] args)
 {
 int option;
 int key = 0;
 do
 {
 Console.WriteLine("1. Input key");
 Console.WriteLine("2. Encrypt message");
 Console.WriteLine("3. Decrypt message");
 Console.WriteLine("4. Crack message");
 Console.WriteLine("5. Exit");
 Console.Write("Select option: ");
 option = int.Parse(Console.ReadLine());
 if (option == 1) key = InputKey();
 else if (option == 2) EncryptMessage(key);
 else if (option == 3) DecryptMessage(key);
 else if (option == 4) CrackMessage();
 } while (option != 5);
 }
}

VB.Net

Dim Alphabet As New List(Of Char)({"A", "B", "C", "D", "E",
 "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P",
 "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"})

Function InputKey() As Integer
 Console.Write("Enter the key: ")
 Dim Key As Integer = Convert.ToInt32(Console.ReadLine())
 Return Key
End Function

Sub EncryptMessage(Key As Integer)
 Console.Write("Enter the message to encrypt: ")
 Dim PlainText As String = Console.ReadLine()
 Dim CipherText As String = ""
 For Pos = 0 To PlainText.Length - 1
 Dim Letter As Char = PlainText(Pos)
 Dim LetterCode As Integer = Alphabet.IndexOf(Letter)
 LetterCode += Key
 If LetterCode >= 26 Then
 LetterCode -= 26
 End If
 CipherText += Alphabet(LetterCode)
 Next
 Console.WriteLine("The encrypted message is " & CipherText)
End Sub

Sub DecryptMessage(Key As Integer)
 Console.Write("Enter the message to decrypt: ")
 Dim CipherText As String = Console.ReadLine()
 Dim PlainText As String = ""
 For Pos = 0 To CipherText.Length - 1
 Dim Letter As Char = CipherText(Pos)

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

23

 Dim LetterPos As Integer = Alphabet.IndexOf(Letter)
 LetterPos -= Key
 If LetterPos < 0 Then
 LetterPos += 26
 End If
 PlainText += Alphabet(LetterPos)
 Next
 Console.WriteLine("The decrypted message is " & PlainText)
End Sub

Sub CrackMessage()
 Console.Write("Enter the message to decrypt: ")
 Dim CipherText As String = Console.ReadLine()
 For Key = 1 To 25
 Dim PlainText As String = ""
 For Pos = 0 To CipherText.Length - 1
 Dim Letter As Char = CipherText(Pos)
 Dim LetterPos As Integer = Alphabet.IndexOf(Letter)
 LetterPos -= Key
 If LetterPos < 0 Then
 LetterPos += 26
 End If
 PlainText += Alphabet(LetterPos)
 Next
 Console.WriteLine("Possible plaintext " & Key & " " &
PlainText)
 Next
End Sub

Sub Main()
 Dim MenuOption As Integer
 Dim Key As Integer
 Do
 Console.WriteLine("1. Input key")
 Console.WriteLine("2. Encrypt message")
 Console.WriteLine("3. Decrypt message")
 Console.WriteLine("4. Crack message")
 Console.WriteLine("5. Exit")
 Console.Write("Selebct option: ")
 MenuOption = Console.ReadLine()
 If MenuOption = 1 Then
 Key = InputKey()
 ElseIf MenuOption = 2 Then
 EncryptMessage(Key)
 ElseIf MenuOption = 3 Then
 DecryptMessage(Key)
 ElseIf MenuOption = 4 Then
 CrackMessage()
 End If
 Loop Until MenuOption = 5
 Console.ReadLine()
End Sub

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

24

Question Part Marking guidance Total
marks

09 2

Evidence must match code from 09.1, including prompts matching
those in code. Code for 09.1 must be sensible.

1 mark: Test evidence shows:

• PLUM input and TPYQ output I. key not visible
• UDLUXJ input and OXFORD output I. key not visible

1 mark: Test evidence shows:

• WIGJONYL input and all 25 possible plaintexts shown.

Exemplar Test Results

1. Input key
2. Encrypt message
3. Decrypt message
4. Crack message
5. Exit
Select option: 1
Enter the key: 4
1. Input key
2. Encrypt message
3. Decrypt message
4. Crack message
5. Exit
Select option: 2
Enter the message to encrypt: PLUM
The encrypted message is TPYQ
1. Input key
2. Encrypt message
3. Decrypt message
4. Crack message
5. Exit
Select option: 1
Enter the key: 6
1. Input key
2. Encrypt message
3. Decrypt message
4. Crack message
5. Exit
Select option: 3
Enter the message to decrypt: UDLUXJ
The decrypted message is OXFORD
1. Input key
2. Encrypt message
3. Decrypt message
4. Crack message

2

AO3 = 2

MARK SCHEME – INTERNATIONAL AS COMPUTER SCIENCE – CS01 – SPECIMEN

25

5. Exit
Select option: 4
Enter the message to decrypt: WIGJONYL
Possible plaintext 1 VHFINMXK
Possible plaintext 2 UGEHMLWJ
Possible plaintext 3 TFDGLKVI
Possible plaintext 4 SECFKJUH
Possible plaintext 5 RDBEJITG
Possible plaintext 6 QCADIHSF
Possible plaintext 7 PBZCHGRE
Possible plaintext 8 OAYBGFQD
Possible plaintext 9 NZXAFEPC
Possible plaintext 10 MYWZEDOB
Possible plaintext 11 LXVYDCNA
Possible plaintext 12 KWUXCBMZ
Possible plaintext 13 JVTWBALY
Possible plaintext 14 IUSVAZKX
Possible plaintext 15 HTRUZYJW
Possible plaintext 16 GSQTYXIV
Possible plaintext 17 FRPSXWHU
Possible plaintext 18 EQORWVGT
Possible plaintext 19 DPNQVUFS
Possible plaintext 20 COMPUTER
Possible plaintext 21 BNLOTSDQ
Possible plaintext 22 AMKNSRCP
Possible plaintext 23 ZLJMRQBO
Possible plaintext 24 YKILQPAN
Possible plaintext 25 XJHKPOZM

