OXFORDAQA

INTERNATIONAL QUALIFICATIONS

INTERNATIONAL AS COMPUTER SCIENCE

Unit 2 Concepts and principles of computer science

Specimen paper

07:00 GMT

Time allowed: 1 hour 30 minutes

Materials

• You may use a calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this answer book. Cross through any work you do not want to be marked.

Information

- The marks for each question are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- In some questions you are required to indicate your answer by completely shading a lozenge alongside the appropriate answer as shown.
- If you want to change your answer you must cross out your original answer as shown.
- If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

	Answer all questions in the spaces provided.
0 1.1	Shade one lozenge to show which Boolean operation is used by the Vernam cipher to combine the plaintext and key to produce the ciphertext.
	נז mark]
	A AND 🗢
	B NAND \bigcirc
	C NOT 🗢
	D OR 🗢
	E XOR 💿
0 1 2	Under certain circumstances, the Vernam cipher offers perfect security.
	State two conditions that must be met for the Vernam cipher to offer perfect security. [2 marks]
	Condition 1
	Condition 2
0 1.3	The Vernam cipher is a symmetric cipher.
	Describe the difference between a symmetric and an asymmetric cipher system.
	[1 mark]

	Proces		Fi	aure 1			
	Proces			guici			
	FIUCES	sor			Main m	emory	
	PC	MAR		Ν	Address	Content	
				$ \rightarrow $	1		
	CIR	MBR	1		2		
			$\langle -$	$ \rightarrow $	3		
					5		
	Conoral P	urposo			6		
	Registe	ers			7		
							• ········

	The computer system shown in Figure 1 uses the von Neumann architecture. The Harvard architecture is an alternative to this.
02.2	Explain two reasons why the Harvard architecture is sometimes used in preference to the von Neumann architecture. [2 marks]

	5	
0 3.1	A sound is sampled and recorded digitally. The sound is sampled at a rate samples per second (Hz) for 3 minutes using a 16-bit sample resolution.	e of 48 000
	Calculate the size of the digital recording, giving your answer in mebibytes.	
	Give your answer rounded to 2 decimal places.	
	You should show your working.	
		[3 marks]
	Answer	mebibytes
03.2	The highest frequency component in a different sound is 15 000 Hz. What is the minimum sampling rate that should be used when recording the ensure that all the frequencies in the original waveform are preserved, so the the recording is played back the original sound is recreated accurately?	is sound to hat when [1 mark]
	Answer	Hz

State the name of this component.

[1 mark]

				7						
04.1	Explain why Unic	ode was in	troduce	ed as a	n alter	native	to A	SCII		[2 marks]
	Figure 3 shows a transmitted using	a 7-bit ASC an even p	II chara arity sy	acter co stem.	de. Th	ne cha	racte	er co	de is to be	
				Fig	ure 3					
		0	0	1	0	1	1	1		
		0	0	Ţ	0	1	1	1		
042	Describe how the	parity bit v	would h	e dene	rated t	for the	cha	racte	r code in F	iqure 3
	using even parity			ie gene				10010		[2 marks]
	Write the parity b	it holow to	oomolo	to the k	ovto th	ot will	bo (contu	icing over	pority
	white the parity b		comple		byte th	iat will	be :	senti	ising even	[1 mark]
		0	0 1	0	1	1	1			
04.4	Describe one limi	itation of th	e use (of parity	bits f	or mar	nagir	ng eri	ors.	
										[1 mark]

Copyright © 2024 OxfordAQA International Qualifications and its licensors. All rights reserved.

	8	
0 5.1	Define the term 'system software'.	[1 mark]
0 5.2	The list below contains five types of software. Four of the types are example system software.	es of
	Shade one lozenge to show which type of software is not system software.	[1 mark]
	A Assemblers	
	B Bitmap image editors	
	C Interpreters	
	D Libraries	
	E Utility programs	
0 5.3	Describe two functions of an operating system.	[2 marks]
	Function 1	
	Function 2	

0 6.1	A bitmap image is 1000 pixels wide by 800 pixels high.
	The image takes up 400 kilobytes of storage space when represented as a bitmap, excluding metadata.
	Calculate the maximum number of different colours that could appear in the image.
	You should show your working.
	[3 marks]
	Answer colours
0 6 . 2	The same image can also be represented using vector graphics.
	The vector graphics representation of the image takes up 2 kB of storage space.
	Explain why the amount of storage space taken up by the vector graphics representation of the image is significantly smaller than the space taken up by the
	bitmap representation. [3 marks]

Copyright © 2024 OxfordAQA International Qualifications and its licensors. All rights reserved.

	10
06.3	One advantage of vector graphics compared to bitmap graphics is that fewer bytes are used to represent an image.
	State two other advantages of vector graphics compared with bitmap graphics. [2 marks]
	Advantage 1
	Advantage 2

	11
0 7	One method that can be used to improve the performance of a processor is to increase the amount of cache memory.
	Describe:
	 what cache memory is what cache memory is used for how increasing the amount of cache memory can improve the performance of a processor.
	[4 marks]
	Turn over for the next question

Copyright © 2024 OxfordAQA International Qualifications and its licensors. All rights reserved.

08.3	Using the rules of Boolean algebra, simplify the following Boolean expression.	
	$A \cdot \overline{B} + B \cdot (\overline{\overline{A} + (\overline{B} \cdot C)})$	
	You must show your working. [4 marks]	
	Working	
	Answer	
	Turn over for the next question	

09.1	Discuss the advantages and disadvantages of programming using a high-level language compared to programming using assembly language. [4 marks]
09.2	Some compilers translate source code into an intermediate language rather than producing an executable file. Bytecode is one example of an intermediate language. Explain how intermediate language code is used after it has been generated. [2 marks]
09.3	State one reason why some compilers produce their final output in an intermediate language instead of machine code.

	16
10.3	The following is a floating point representation of a number:
	1 • 0 1 1 0 0 0 0 1 1 Mantissa Exponent
	Calculate the decimal equivalent of the number. You must show your working. [2 marks]
	Answer
10.4	Write the normalised floating point representation of the decimal value 58.5 in the boxes below. You must show your working. [3 marks]
	Answer Mantissa Exponent

	There can be a loss of precision when a decimal number is stored using a floating point system.			
	The closest possible representation of the decimal number 13.8 is shown below.			
	0 • 1 1 0 1 1 0 0 1 0 0 Mantissa Exponent			
	When this bit pattern is converted back to decimal its value is 13.75, not 13.8			
1 0.5	Calculate the absolute error that has occurred. [1 mark]			
	Answer			
1 0 . 6	Calculate the relative error that has occurred.			
	Express your answer as a percentage to two decimal places. [1 mark]			
	Answer			
Turn over for the next question				

	18	
11.1	Explain why desktop computers usually have secondary storage devices.	[2 marks]
11.2	A computer is fitted with a solid-state disk (SSD).	
	Describe the principles of operation of an SSD.	[4 marks]

This table is included so that you can answer Question 12.1 on page 21.

Table 2 – Standard OxfordAQA assembly language instruction set

LDR Rd, <memory ref=""></memory>	Load the value stored in the memory location specified by
LDR Rd [Rn]	Load the value stored in the memory location specified in register
	r inte register d
STR Rd, <memory ref=""></memory>	Store the value that is in register d into the memory location
	<pre>specified by <memory ref="">.</memory></pre>
STR Rd, [Rn]	Store the value that is in register d into the memory location
	specified by register n.
ADD Rd, Rn, <operand2></operand2>	Add the value specified in <operand2> to the value in register n</operand2>
	and store the result in register d.
SUB Rd, Rn, <operand2></operand2>	Subtract the value specified by <operand2> from the value in</operand2>
	register n and store the result in register d
MOV Rd, <operand2></operand2>	Copy the value specified by <operand2> into register d</operand2>
CMP Rn. <operand2></operand2>	Compare the value stored in register n with the value specified by
	Congrand2>
P (labal)	Always branch to the instruction of position <1 at >1 in the
D (IADEI)	
Descriptions elabols	program.
B <condition> <label></label></condition>	Branch to the instruction at position <label> if the last</label>
	comparison met the criterion specified by <condition>.</condition>
	Possible values for <condition> and their meanings are:</condition>
	EQ: equal to GT: greater than GE: greater than or equal to
	NE: not equal to LT: less than LE: less than or equal to
AND Rd, Rn, <operand2></operand2>	Perform a bitwise logical AND operation between the value in
	register n and the value specified by <operand2> and store the</operand2>
	result in register d.
ORR Rd, Rn, <operand2></operand2>	Perform a bitwise logical OR operation between the value in
	register n and the value specified by <operand2> and store the</operand2>
	result in register d.
EOR Rd, Rn, <operand2></operand2>	Perform a bitwise logical XOR (exclusive or) operation between
	the value in register n and the value specified by <operand2></operand2>
	and store the result in register d
MVN Rd, <operand2></operand2>	Perform a hitwise logical NOT operation on the value specified by
	<pre>concerand2> and store the result in register d</pre>
LSL Bd Bn conerand?	Logically shift left the value stored in register p by the number of
Lot ita, itir, toperanazz	bits specified by constant 2% and store the result in register d
LOD Dd DD (anamar 10)	bits specified by <operation and="" d.<="" in="" register="" result="" store="" td="" the=""></operation>
LSK KO, KN, <operand2></operand2>	Logically shift right the value stored in register n by the number of
	DITS specified by <operand2> and store the result in register d.</operand2>
HALT	Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:

- # use the decimal value specified after the #, eg #25 means use the decimal value 25.
- Rm use the value stored in register m, eg R6 means use the value stored in register 6.

The available general purpose registers that the programmer can use are numbered 0 to 12.

The greatest common divisor of two positive integers A and B is the largest positive integer that divides both of the numbers without leaving a remainder.

For example, if A = 4 and B = 6 then:

1 2

- 4 has the divisors 1, 2 and 4
- 6 has the divisors 1, 2, 3 and 6

Therefore, the greatest common divisor of 4 and 6 is 2 since this is the biggest number which appears in the list of divisors of both 4 and 6.

The method shown in **Figure 5** is a famous method for determining the greatest common divisor of two positive integers, A and B:

Figure 5

```
WHILE A \neq B
IF A > B THEN
A \leftarrow A - B
ELSE
B \leftarrow B - A
ENDIF
ENDWHILE
```

When the algorithm terminates, the value of A is the same as the value of B, and this value is the greatest common divisor of A and B.

12.1	Write a program using the OxfordAQA assembly language instruction set , shown on page 19 in Table 2 , that uses the method described in Figure 5 to calculate the greatest common divisor of two positive integers.
	 At the start, the positive integer A will be stored in memory location 102 and the positive integer B in memory location 103. Your program should use these values to find their greatest common divisor. When your program terminates it should store the greatest common divisor of these two numbers in memory location 104.
	[8 marks]
	END OF QUESTIONS
Permission to repro unsuccessful and O please contact the	duce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been xfordAQA International Qualifications will be happy to rectify any omissions of acknowledgements. If you have any queries Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ