Published for OXFORD INTERNATIONAL AQA EXAMINATIONS

International GCSE MATHEMATICS Extended

Steve Fearnley June Haighton Steve Lomax Peter Mullarkey James Nicholson Matt Nixon

OXFORD

Contents

1 Calculations 1

1.1 Place value and rounding	4
1.2 Adding and subtracting	8
1.3 Multiplying and dividing	12
Summary	16
Review	17
Assessment 1	18

2 Expressions

2.1 Simplifying expressions	 22
2.2 Indices	 26
2.3 Expanding and factorising 1	 30
2.4 Algebraic fractions	 34
Summary	 38
Review	 39
Assessment 2	 40

3 Angles and polygons

3.1 Angles and lines	44
3.2 Triangles and quadrilaterals	48
3.3 Symmetry	52
3.4 Congruence and similarity	56
3.5 Polygon angles	
Summary	64
Review	65
Assessment 3	66

4 Handling data 1

4.1 Representing data 1	70
4.2 Averages and spread 1	74
4.3 Frequency diagrams	78
Summary	82
Review	83
Assessment 4	84

5 Fractions, decimals and percentages

5.1 Fractions and percentages	88
5.2 Calculations with fractions	92
5.3 Fractions, decimals and percentages	96
Summary	100
Review	101
Assessment 5	102
Life skills 1: The business plan	104

6 Formulae and functions

6.1	Formulae	108
6.2	Functions	112
6.3	Equivalences in algebra	116
6.4	Expanding and factorising 2	120

Summary	124
Review	125
Assessment 6	126
Revision 1	128

7 Working in 2D

7.1 Measuring lengths and angles	132
7.2 Area of a 2D shape	136
7.3 Transformations 1	140
7.4 Transformations 2	144
Summary	148
Review	149
Assessment 7	150

8 Probability

8.1 Probability experiments	
8.2 Theoretical probability	158
8.3 Mutually exclusive events	162
Summary	166
Review	167
Assessment 8	

9 Measures and accuracy

9.1 Estimation and approximation	172
9.2 Calculator methods	176
9.3 Measures and accuracy	180
Summary	
Review	185
Assessment 9	186

10 Equations and inequalities

10.1 Solving linear equations	. 190
10.2 Quadratic equations	. 194
10.3 Simultaneous equations	. 198
10.4 Approximate solutions	. 202
10.5 Inequalities	. 206
Summary	. 210
Review	. 211
Assessment 10	. 212

11 Circles and constructions

11.1 Circles 1	216
11.2 Circles 2	220
11.3 Circle theorems	224
11.4 Constructions and loci	228
Summary	232
Review	233
Assessment 11	234
Life skills 2: Starting the business	236

12 Ratio and proportion

240
244
248
252
253
254
256

13 Factors, powers and roots

13.1 Factors and multiples	260
13.2 Powers and roots	264
13.3 Surds	268
Summary	272
Review	273
Assessment 13	274

14 Graphs 1

14.1	Equation of a straight line	278
14.2	Properties of quadratic functions	282
14.3	Kinematic graphs	286
14.4	Gradients and areas under graphs	290
14.5	Exponential and trigonometric	
	functions	294
Summary		298
Review		299
Assessment 14		300

15 Working in 3D

15.1 3D shapes	
15.2 Volume of a prism	
15.3 Volume and surface	e area 312
Summary	
Review	
Assessment 15	
Life skills 3: Getting read	dy 320
16 Handling data 2 📐	

16.1 Averages and spread 2	324
16.2 Box plots and cumulative frequency	
graphs	328
16.3 Scatter graphs and correlation	332
16.4 Time series	336
Summary	340
Review	341
Assessment 16	342

17 Calculations 2

17.1 Calculating with roots and indices	346
17.2 Exact calculations	350
17.3 Standard form	354
Summary	358
Review	359
Assessment 17	360
Revision 3	362

18 Pythagoras, trigonometry, vectors and matrices

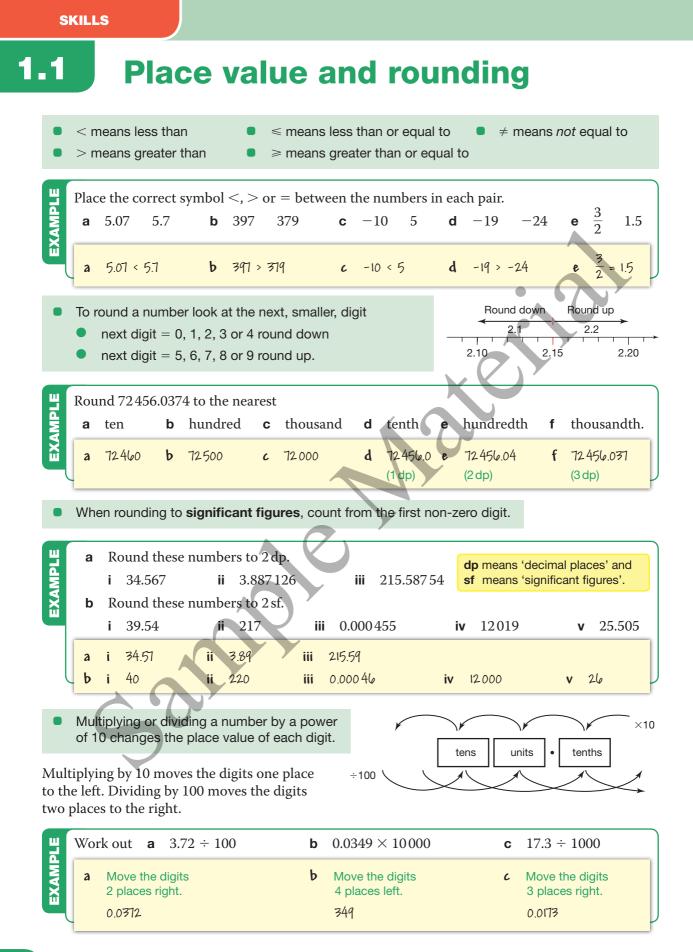
18.1	Pythagoras' theorem	366
18.2	Trigonometry 1	370
18.3	Trigonometry 2	374
18.4	Pythagoras and trigonometry	
	problems	378
18.5	Vectors	382
18.6	Matrices	386
18.7	Combining transformation matrices	390
Sumr	nary	394
Revie	w	395
Asses	ssment 18	396
40 T	he weekshility of sembiand quality	

19 The probability of combined events

19.1 Venn diagrams	400
19.2 Sample spaces	404
19.3 Tree diagrams	408
19.4 Conditional probability	412
Summary	416
Review	417
Assessment 19	418
Life skills 4: The launch party	

20 Sequences

20.1 Linear Sequences	424
20.2 Quadratic sequences	428
20.3 Special sequences	432
Summary	
Review	437
Assessment 20	438


21 Units and proportionality

7	21.1 Compound units	442
8	21.2 Converting between units	446
0	21.3 Direct and inverse proportion	
	21.4 Growth and decay	454
4	Summary	458
-	Review	459
8	Assessment 21	460

22 Differentiation

22.1 Rates of change	464
22.2 Differentiating polynomials	468
22.3 Tangents to curves 4	472
22.4 Turning points 4	476
Summary	480
Review	481
Revision 4	482
Formulae	484

i orificiace	101
Key phrases and terms	485
Answers	487
Index	558

Exercise 1.1S

- Write these numbers in words. 1
 - 1307 29006 b а
 - 300 000 d 605030 С
- Write these numbers in figures. 2
 - Eight thousand and forty-three а
 - Seventy million b
 - Two hundred thousand and fifty-one С
 - d Two thousand and ten
- Write these sets of numbers in ascending 3 (increasing) order.
 - 0.3, 3.1, 1.3, 2, 1, 0.1 а
 - b 607, 77.2, 27.6, 7.06, 6.07
 - 7.83, 7.3, 7.8, 7.08, 7.03, 7.38 С
 - d 4.2, 8.24, 8.4, 4.18, 2.18, 2.4
- Write these sets of numbers in descending 4 (decreasing) order.
 - 6008, 682.8, 862.6, 6000.8, 8000.6 а
 - b 47.9, 94.7, 49.7, 79.4, 74.9, 97.4
 - 16.7, 18.16, 16.18, 17.16, 18.7, 17.6 С
 - 1.06, 13.145, 1.1, 2.38, 13.2, 2.5 d
- Use one of the symbols <, > or = to 5 complete these statements.
 - 250 🗆 205 1.377 🗆 1.73 а b
 - $\frac{3}{8}$ \Box 0.4 $17 \Box -71$ d С
 - $-0.09 \Box -0.089$ f 0.625 е
- Explain which number in each pair is bigger. 6
 - 4.52 and 4.05 а b 5.5 and 5.05
 - 16.8 and 16.75 d 16.8 and 16.15 С
- Say whether each statement is true or false. 7

а	4.1 < 4		b	6.33 <	< 6.333	
с	$0.23 \leq 0.2$	24	d	-2.3	≥ -2.4	
е	5.31 < 5.3	1	f	5.31 ≤	≤ 5.31	
Ro	und these n	umb	pers to t	he near	rest	
i	10	ii	100	iii	1000	
а	3048	b	1763	С	294	
d	51	е	43	f	743	
g	2964	h	1453	i	17	

8

j

24598

9		ound these numbers to 1 decimal place ii 2 decimal places.						
		-					r	
	a	39.114		7.068		c	5.915	
	d	512.715		4.259		f	12.007	
	g	0.833		26.88				
10		und these nu						
			_	dredth			housandth.	
	a		b	15.91		C	127.9984	
	d		е ,	55.14			0.007 49	
11		and these nu	ımb	ers to	one s	sign	ificant	
	figu		2	100			1.00	
	a	157 b		488		c	4.66	
	d	13.77 e		.000 45		f	121450	
12		and these nu	amb	ers to	two s	sign	ificant	
	a ngu	1res. 483	b	1206		с	488	
	a d	13562		533		f		
		0.355	e h			-		
	g		h	0.421		i	0.0566	
10	J .	0.004673				I	0.000004152	
13	Round each number to the accuracy given in brackets.							
7	a	9.732 (3 sf)		b	0.261	010	(2 dp)	
	c	147.49 (1 d	-		28.62			
	е	0.5252 (2 st			4.198			
	g	1245.4 (3 d	-				(3 dp)	
		273.6 (2 sf)					14 (1 dp)	
14		ltiply these			by 10.			
	a	16.7	b	24.8		С	0.716	
	d	1.095	е	243		f	281.3	
15	Div	ide these nu			10.			
	а	214	b	67.3		С	4106	
	d	200.7	е	6.025)	f	86	
16	Cal	culate						
	а	13.06×10^{10}	0	b	208.5	5 ÷	100	
	С	1.085×10^{-10}	000	d	2487	÷	1000	
	е	$0.008 \div 10$)	f	0.006	519	imes 1000	

- $45.13 \div 1000$ h 0.000045×100 g
- 17 Calculate
 - $1.76 \times 10 \times 100$ а
 - $9.3 \times 100 \div 10$ b

L

167733

16344

k

APPLICATIONS

1.1 Place value and rounding When rounding: five or more rounds up, four or less rounds down. RECAP For decimal places count from the decimal point. For significant figures count from the first non-zero digit. To multiply or divide by 10 use place value and move the digits one place to the left or right. HOW TO To solve a problem involving place value or rounding (1) Read the question and think what to do. (2) Apply your knowledge of place value and rounding. (3) Answer the question. EXAMPLE Ajani charges a customer £352.46, but has mixed up two digits. They should be swapped around. His mistake costs him £3.96. What should he have charged? (1) Since $\pounds 1 < m$ istake $< \pounds 10$, the units column (2) must be wrong. (2) Swapping the 2 and 4 would leave the 6, so the mistake would end in zero. So it is the 6 and 2. The correct amount is £356.42 (3)EXAMPLE An engineer measures the thickness of four sheets of metal 2.05 mm 2.033 mm 2.4 mm 2.303 mm If she piled up 100 of the thinnest sheets, how high would the pile be? а If her measurement was inaccurate by 0.001 mm, between what limits would the pile be? b Put the measurements in ascending order. 2033 2.050 2303 2.400 100 × 2.033 = 203.3 mm а b 2.033 - 0.001 = 2.032, $100 \times 2.032 = 203.2 \,\mathrm{mm}$ 2.033 + 0.001 = 2.034, 100 × 2.034 = 203.4 mm The pile is between 203.2 mm and 203.4 mm high. EXAMPLE The following distances were recorded in a long jump competition. MacLane 5.89 m Neyman 5.98 m Ockham 6.12 m 6.03m Pell Ouillen 5.09 m Ricci 5.8 m Minh-Ha says 'the gap between first and last is over ten times the gap between first and а second'. Is she correct? Sze-Kie says 'if the results were given to 1 dp then there would be a joint second place'. b Is she correct? (1) Put the results in descending order. b (1) Round the results to 1 dp а 6.12 6.03 5.98 5.89 5.80 5.09 6.1 6.0 6.0 5.9 5.8 5.1 (2)First - second = 6.12 - 6.03 = 0.09 (2) Sze-Kie is correct. (3)First - last = 6.12 - 5.09 = 1.03 $10 \times 0.09 = 0.90 < 1.03$ Minh-Ha is correct. (3) Number Calculations 1

Exercise 1.1A

Don't use a calculator for this exercise. Practise your arithmetic!

- Soren has given a customer a bill for \$356.28. He realises he has mixed up the 6 and the 2. How much does he have to pay back to the customer?
- 2 Veneer is a thin sheet of attractive wood. A joiner has a pile of 10 sheets of oak veneer. Each sheet is 0.5 mm thick.
 - **a** How thick is the pile?
 - b The joiner glues a sheet of veneer on to the top of different blocks of wood. What is the new overall thickness of
 - i a 5 cm block
 - ii a 3.5 cm block
 - iii a 12.25 cm block?
 - **c** What would be the new thicknesses of the blocks above if he glues veneer on all four sides of the blocks?
- **3** Votes for four politicians were declared.
 - A 25958 B 2705
 - C 26057 D 5651

The local newspaper decides to round these off to the nearest 1000 in its report.

- **a** What would each result be reported as?
- **b** What would each result be if they were rounded to the nearest 100?
- 4 These are the times recorded in a 100 m sprint race.

Adams	12.37 s	Bolyai	12.35 s
Carroll	13.72 s	d'Arcy	11.09 s
Eckert	11.33 s	Fisher	11.9 s

- **a** Mikael says 'the winner is quarter of a second faster than their nearest rival'. Is this true?
- **b** Carroll's personal best time is 12.17 s. If he had run this time, what would have been his position?
- **c** Which two runners had the closest times?

5 Garvan is resizing photographs to make thumbnail pictures. He decides to divide lengths by 50 and then round to the nearest whole number.

What width and height would these pictures become as thumbnails?

- **a** 4288×2848 **b** 2197×1463
- **c** 3648×2746 **d** 6032×4502
- e His resize screen allows him to put in a "percentage of original width and height". What percentage would he put in the box to divide by 50?

Ian gets his homework back.

Find $\sqrt{3} \times 25^3$, rounding your answer to 3 significant figures.

$$25^3 = 1.73 \times 15600 =$$

= 27000 (3st)

26988

What mistake has Ian made?

7 How many correct statements can you make using one of these symbols

 $\sqrt{3}$ x

and one of these pairs of numbers?

3.118	and	3.112
4.5	and	$\frac{9}{2}$
3.004	and	2.9961

8 A number *x* satisfies

 $x = 1.5 (2 \text{ sf}) \text{ and } x \neq 1.50 (3 \text{ sf}).$

What possible values can *x* take?

9 A lift has a safe maximum load of 350 kg. Four people give their weights to these accuracies.

80 kg (10 kg)	95 kg (2 sf)
96.5 kg (1 dp)	72 kg (1 kg)

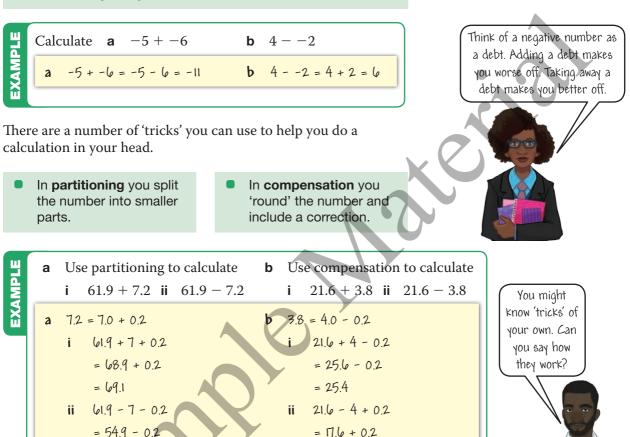
Is it safe for them all to get into the lift together? Show your working.

p.260

SKILLS

1.2

Adding and subtracting


-2 or + -2

-3 -2 -1

+4 or -4

A number with a plus or minus sign is a **directed number**. You can extend the basic rules of addition and subtraction to include negative numbers.

- Adding a **negative** number counts as subtraction.
- Subtracting a negative number counts as addition.

= 17.8

Always use an estimate to check the result of a written calculation.

EXAMPLE

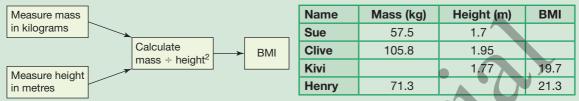
ų	Calo	culate these using a written m	nethod.	
	а	102.773 + 28.47	b	26.44 - 1.105
	а	Estimate = 100 + 30 = 130	b	Estimate = 26 - 1 = 25
		102.773		26.440
		+ 28.470		- 1.105
		$131.243 \approx 130$		25.335 ≈ 25 ✓

Add zeros to help you line the digits up in the correct columns.

Number Calculations 1

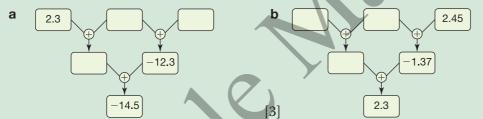
= 54.7

Assessment 1


1	Carli tries to order each set of numbers from smallest to largest. One pair of numbers in each list is in the wrong order. Say where Carli has made a mistake and put each list of numbers in order, starting with the smallest.	
	a 0.8 1.9 3.3 44 303 57.6	[2]
	b -0.07 -2.19 30 43.56 188.0 194.7	[2]
2	Carli then tries to put these numbers in ascending order $42 \div 100, 0.3 \times 10, 4236 \div 1000, 516 \div 10, 42 \times 100, 216 \times 1000$ Has she ordered the numbers correctly? Give your reasons.	[4]
3	The world's tallest man, Robert Wadlow, was 271.78 cm (2 dp) tall. The world's tallest woman, Yao Defen, is 233.34 cm (2 dp) tall.	
	 A challenger to the world's tallest man record measured his height as 271.8 cm to one decimal place. Has the challenger definitely beaten the world record? Give your reasons. 	[1]
	b A challenger to the world's tallest woman record measured her height as 233.341 cm. Has the challenger definitely beaten the world record? Give your reasons.	[1]
4	Dave is 36 and Nadya is 44. Nadya says that she and Dave are the same age to one significant fig	ure.
	a Is Nadya correct?	[1]
	b Will Dave and Nadya be the same age to one significant figure in one year's time? Give your reasons.	[2]
	c How old will Dave and Nadya be the next time their ages are the same to one significant figure?	[2]
5	As the Earth spins on its axis, everything on the Edward's path Earth's surface moves with it. The distance travelled in one day due to the Earth's rotation is $3.142x$, where x is the diameter of the circular path. Abena lives on the equator and Edward lives in the UK. x = 12756 for Abena and $x = 8134$ for Edward.	
	a Write both values of <i>x</i> to two significant figures.	[2]
	b Use your answers to part a to estimate how much further Abena travels than Edward in one day.	[3]
	c Explain how using values of <i>x</i> correct to one significant figure would affect the estimate in part b .	[3]
6	Jasmine's bike has wheels of circumference (i.e. perimeter) 2.5 m. When Jasmine cycles to school, the wheels go round 850 times. How far does Jasmine cycle to school?	[2]
7	Work out these problems and include units in your answer.	
	 A bag of sweets weighing 113 g includes wrappings totalling 0.5 g. Each sweet weighs 4.5 g. How many sweets are in the bag? 	[2]
	 A football stadium has 135 400 m² of seating for its fans. Each fan is allowed 5.4 m² of spa How many fans, to the nearest 1000, is the stadium capable of holding? 	
	Number Coloulations 1	

8 There are 10 questions in a quiz.

A correct answer scores 3 points. A wrong answer loses 2 points.


Any question not answered loses 1 point. A negative total is possible.

- **a** Write down the maximum and minimum points any player can score. [2]
- **b** Rabiyah answers eight of the ten questions. Five are correct. How many points does Rabiyah score?
- **c** Describe three different ways of scoring -10 points.
- **9** To find your BMI (Body Mass Index) you use this process:

Copy and complete the table. Give your answers to 1 decimal place.

- 10 A supermarket stocks packets of the new breakfast cereal Maltibix. Each packet of Maltibix holds 650 g inside a cardboard box weighing 68 g. Fifty boxes, each holding 36 of these packets are delivered to the supermarket. Does the mass of the delivery exceed 1000 kg?
- 11 In the number grids shown, the number in each cell is the sum of the two cells above it. Copy and complete the grids shown.

12	A magic square is a square grid of numbers where each number
	is <i>different</i> . The sum of the numbers in each row, each column
	and each diagonal is the same.
	Fill in the missing values in the magic square.

- Lana's garden is rectangular and measures 12.5 m by 9.2 m. The garden is to be sown with grass seed. The gardener needs 25 g of grass seed for each square metre of ground. Grass seed costs \$5.35 per kg. The gardener estimates that he will need \$20 to buy the grass seed. Lana disagrees with the gardener's estimate. She gives the gardener \$15 to buy the grass seeds. Which estimate do you agree with? Explain your answer.
- **14** The *reciprocal* of a number n is $1 \div n$.
 - **a** What is the only number which is the same as its reciprocal? [1]
 - **b** What is the only number which has no reciprocal? Explain your answer. [1]
 - Nisreen says that every positive number is greater than its reciprocal.
 Find an example that disproves Nisreen's claim.
- **15** Write one pair of brackets in each calculation to make the answer correct.
 - **a** $3 + 4 \times 5 = 35$ [1] **b** $4 \div 3 + 5 = 6\frac{1}{3}$ [1] **c** $5(2^3 + 0.4) \div 4 3 \times -1 = 6$ [2]

[3]

[3]

[6]

[4]

[3]

[4]

[4]

[1]

5

-2

7

4 | -1 | 2

1