Published for OXFORD INTERNATIONAL AQA EXAMINATIONS

International GCSE BIOLOGY

Ann Fullick Editor: Lawrie Ryan

OXFORD

Biology

Contents

V

How to use this book

Practical skills

1	Cel	I structure and organisation	2
	1.1	Animal and plant cells	2
	1.2	Eukaryotes and prokaryotes	4
	1.3	Specialised cells	6
	1.4	lissues and organs	8
	1.5	Organ systems	10
	1.0	Osmosis	12
	1.8	Active transport	16
	Sum	mary questions	18
	Prac	tice questions	19
2	Cel	I division and differentiation	20
	2.1	Cell division, growth, and differentiation	20
	2.2	Cell division in sexual reproduction	22
	2.3	Stem cells	24
	2.4	Cell growth and cancer	26
	Prac	mary questions tice questions	28
3	Hur	nan biology - Breathing	30
	3.1	Exchanging materials	30
	3.2	Breathing and gas exchange in the lungs	32
	3.3	Artificial breathing aids	34
	3.4 3.5	The effect of exercise on the body	38
	3.6	Anaerobic respiration	40
	Sum	imary questions	42
	Prac	tice questions	, 43
4	Hur	nan biology - Circulation	44
	4.1	The circulatory system and the heart	44
	4.2	Helping the heart	46
	4.3	Keeping the blood flowing	48
	4.4 4.5	The immune system and blood groups	52
	Sum	mary questions	54
	Prac	tice questions	55
5	Hur	nan biology – Digestion	56
	5.1	Carbohydrates, lipids, and proteins	56
	5.2	Catalysts and enzymes	58
	5.3	Factors affecting enzyme action	60
	5.4 5.5	Making digestion efficient	62 64
	5.6	Exchange in the gut	66
	5.7	Making use of enzymes	68
	Sum	mary questions	70
	Prac	tice questions	/1

6	Ner	vous coordination and behaviour	72
	6.1	Responding to change	72
	6.2	Reflex actions	74
	6.3	Animal behaviour	76
	6.4	Animal communications	78
	6.5	Reproductive behaviours	80
	6.6	Human use of animal benaviours	82
	Sum	mary questions	84
	Prac	tice questions	85
7	Hon	neostasis	86
	7.1	Principles of homeostasis	86
	7.2	Removing waste products	88
	7.3	The human kidney	90
	7.4	Controlling body temperature	92
	7.5	Controlling blood glucose	94
	7.6	Treating diabetes	96
	Sum	mary questions	98
	Prac	tice questions	99
0	Dof	anding ourselves against disease	100
0	81	Pathogens and disease	100
	8.2	Defence mechanisms	102
	8.3	Immunity	104
	8.4	Using drugs to treat disease	106
	8.5	Changing pathogens	108
	8.6	Growing and investigating bacteria	110
	Sum	mary questions	112
	Prac	tice questions	113
0	Dla	ate ae arganieme	11/
9	0 1	Photosynthesis	11/
	92	Limiting factors	116
	9.3	How plants use glucose	118
	9.4	Exchange in plants	120
	9.5	Evaporation and transpiration	122
	9.6	Transport systems in plants	124
	Sum	mary questions	126
	Prac	tice questions	127
40	Vori	ation and inharitance	100
10	10 1		128
	10.1	Types of reproduction	130
	10.3	Causes of variation	132
	10.4	From Mendel to modern genetics	134
	10.5	Inheritance in action	136
	10.6	DNA and family trees	138
	10.7	Inherited conditions in humans	140
	10.8	More inherited conditions in humans	142
	Sum	mary questions	144
	Prac	tice questions	145

11 Genetic manipulation	146
11.1 Cloning	146
11.2 Adult cell cloning	148
11.3 Genetic engineering	150
11.4 Making choices about genetic technology	152
Summary questions	154
Practice questions	155
12 Evolution, adaptations and	

	interdependence	156
	12.1 Theories of evolution	156
	12.2 Natural selection	158
	12.3 Isolation and the evolution of new species	160
	12.4 Adapt and survive	162
	12.5 Adaptations in animals	164
	12.6 Adaptations in plants	166
	12.7 Competition in animals	168
	12.8 Competition in plants	170
	12.9 Adaptations in parasites	172
	Summary questions	174
	Practice questions	175
3	Ecology	176
	13.1 Pyramids of biomass	176
	13.2 Energy transfers	178
	13.3 Making food production efficient	180
	13.4 Decay processes	182
	13.5 The carbon cycle	184
	Summary questions	186
	Practice questions	187

14	Human population and pollution	188
	14.1 The effects of the human	
	population explosion	188
	14.2 Land and water pollution	190
	14.3 Air pollution	192
	14.4 Deforestation	194
	14.5 Global warming	196
	14.6 Analysing the evidence	198
	Summary questions	200
	Practice questions	201
Ex	perimental data handling	202
Inve	estigations	202
Set	ting up investigations	204
Usiı	ng data	206
Exa	am questions and answers	208
Glo	ossary	211
An	swers	221
Ind	lex	250

How to use this book

This book has been written for you by experienced teachers and subject experts. It covers what you need to know for your exams and is packed full of features to help you achieve the very best that you can.

Figure 1 Many diagrams are as important for you to learn as the text, so make sure you revise them carefully

Key words are highlighted in the text. You can look them up in the glossary at the back of the book if you are not sure what they mean.

Required practical

This feature helps you to become familiar with key practicals. It may be a simple introduction, a reminder, or the basis for a practical in the classroom.

Summary questions

These questions give you the chance to test whether you have learnt and understood everything in the topic. If you get any wrong, go back and have another look. They are designed to be increasingly challenging.

And at the end of each chapter you will find ...

Chapter summary questions

These will test you on what you have learnt throughout the whole chapter, helping you to work out what you have understood and where you need to go back and revise.

Practice questions

These questions are examples of the types of questions that you will answer in your actual exam, so you can get lots of practice during your course.

Learning objectives

Each topic begins with key statements that you should know by the end of the lesson.

Study tip

These hints give you important advice on things to remember and what to watch out for.

Did you know ...?

There are lots of interesting and often strange facts about science. This feature tells you about many of them.

O links

Links will tell you where you can find more information about what you are learning and how different topics link up.

Key points

At the end of the topic are the important points that you must remember. They can be used to help with revision and summarising your knowledge.

Practical skills

During this course, you will develop your understanding of the scientific process and the skills associated with scientific enquiry. Practical work is an important part of the course as it develops these skills and in addition it reinforces concepts and knowledge developed during the course.

As part of this course, you are expected to undertake practical work in many topics and must carry out the five required practicals listed below:

Required practicals

- **1** Investigating the effect of different concentrations of solutions separated by a partially permeable membrane.
- 2 Investigating how variables effect the rate of photosynthesis.
- **3** Investigating how different temperatures and pH affect the rate of digestion.
- 4 Investigating the effects of exercise on the human body.
- **5** Investigating the effect of disinfectants and antibiotics on uncontaminated cultures of microorganisms.

In Paper 2, you will be assessed on aspects of the practical skills listed below, and may be required to read and interpret information from scales given in diagrams and charts, present data in appropriate formats, design investigations, and evaluate information that is presented to you.

Designing a practical procedure

- Design a practical procedure to answer a question, solve a problem, or test a hypothesis.
- Comment on/evaluate plans for practical procedures.
- Select suitable apparatus for carrying out experiments accurately and safely.

Control

- Appreciate that, unless certain variables are controlled, experimental results may not be valid.
- Recognise the need to choose appropriate sample sizes, and study control groups where necessary.

Risk assessment

Identify possible hazards in practical situations, the risks associated with these hazards, and methods
of minimising the risks.

Collecting data

• Make and record observations and measurements with appropriate precision and record data collected in an appropriate format (such as a table, chart, or graph).

Analysing data

- Recognise and identify the cause of anomalous results and suggest what should be done about them.
- Appreciate when it is appropriate to calculate a mean, calculate a mean from a set of at least three results, and recognise when it is appropriate to ignore anomalous results in calculating a mean.
- Recognise and identify the causes of random errors and systematic errors.
- Recognise patterns in data, form hypotheses, and deduce relationships.
- Use and interpret tabular and graphical representations of data.

Making conclusions

• Draw conclusions that are consistent with the evidence obtained and support them with scientific explanations.

Evaluation

- Evaluate data, considering its repeatability, reproducibility, and validity in presenting and justifying conclusions.
- Evaluate methods of data collection and appreciate that the evidence obtained may not allow a conclusion to be made with confidence.
- Suggest ways of improving an investigation or practical procedure to obtain extra evidence to allow a conclusion to be made.

Chapter 1 Cell structure and organisation

1.1

Learning objectives

After this topic, you should know:

- the main parts of animal and human cells
- the similarities and differences between plant and animal cells.

Figure 1 Diagrams of cells are much easier to understand than the real thing seen under a microscope. The top picture shows an animal cell magnified ×2000 times under an electron microscope. Below it is the way that a model animal cell is drawn to show the main features common to most living cells, including those in humans

Animal and plant cells

Earth is covered with a great variety of living things. However, they all have one thing in common – they are all made up of cells. Most cells are very small and you can only see them using a microscope. Eggs are the biggest animal cells. Unfertilised ostrich eggs are the biggest of all – they have a mass of around 1.3 kg and you certainly don't need a microscope to see them! The **light microscopes** in schools may magnify things several hundred times. Scientists have found out even more about cells using **electron microscopes**. These can magnify objects more than a hundred thousand times.

Most of the organisms you see around you are **eukaryotes**. This includes all animals and plants. Many microorganisms are **prokaryotes**. You will compare **eukaryotic cells** and **prokaryotic cells** on page 5.

Animal cells – structure and function

All eukaryotic cells have some features in common. You can see these clearly in animal cells. Human cells have the same features as other animal cells, and so do the cells of most other living things.

- The nucleus controls all the activities of the cell. It contains the genes on the chromosomes that carry the instructions for making the proteins needed to build new cells or new organisms.
- The **cytoplasm** a liquid gel in which most of the chemical reactions needed for life take place, for example, the first stages of respiration.
- The cell membrane controls the passage of substances such as glucose and mineral ions into the cell. It also controls the movement of substances such as urea or hormones out of the cell.
- The **mitochondria** structures in the cytoplasm where oxygen is used and where most of the energy is released during respiration.
- **Ribosomes** where **protein synthesis** takes place, making all the proteins needed in the cell.

Plant cells – structure and function

Plants are very different organisms from animals. They make their own food by photosynthesis. They stay in one place, and do not move their whole bodies about from one place to another.

Plant cells have all the features of a typical animal cell, but they also contain features that are needed for their very different way of life. **Algae** are simple aquatic organisms. They also make their own food and have many similar features to plant cells. For centuries they were classified as plants, but now they are part of a different kingdom.

Figure 2 Algal cells contain a nucleus and chloroplasts so they can photosynthesise

All plant and algal cells have:

• a cell wall made of cellulose that strengthens the cell and gives it support.

Many (but not all) plant cells also have these other features:

- Chloroplasts are found in all the green parts of the plant. They are green because they contain the green substance chlorophyll. Chlorophyll absorbs light energy to make food by photosynthesis. Root cells do not have chloroplasts because they are underground and do not photosynthesise.
- A permanent vacuole is a space in the cytoplasm filled with cell sap. This is important for keeping the cells rigid to support the plant.

Figure 3 A plant cell has many features in common with an animal cell, as well as other features that are unique to plants

Practical

Looking at cells

Set up a microscope to look at plant cells, for example, from onions, *Elodea,* and/or algal cells. You should see the cell wall, the cytoplasm, and sometimes a vacuole. You will see chloroplasts in the *Elodea* and the algae, but not in the onion cells because they do not photosynthesise.

Figure 4 Some of the common features of plant cells show up well under a light microscope. Here, the features are magnified ×40

Summary questions

- **1 a** List the main structures you would expect to find in an animal cell.
 - **b** You would find all the things that are present in animal cells in a plant cell or algal cell, too. There are three extra features that may be found in plant cells but not in animal cells. What are they?
 - c What are the main functions of these three extra structures?
- 2 Why are the nucleus and the mitochondria so important in all cells?
- **3** Chloroplasts are found in many plant cells but not in all of them. Give an example of plant cells without chloroplasts, and explain why they have none.

Study tip

Remember that not all plant cells have chloroplasts. Don't confuse chloroplasts and chlorophyll.

O links

For more information on photosynthesis, look at 9.1 Photosynthesis.

Did you know ...?

The best light microscopes magnify cells ×2000. To give an idea of scale, this would make an average person about 3.5 km tall. An electron microscope magnifies cells ×2000000, making an average person around 3500 km tall!

Study tip

Learn all the parts of cells and their functions. This will help you answer many different questions on the biology papers, not just the ones on cell structure.

Key points

- Most human cells are similar to most other animal cells and contain features common to all cells – a nucleus, cytoplasm, cell membrane, mitochondria, and ribosomes.
- Plant and algal cells contain all the structures seen in animal cells as well as a cellulose cell wall. Many plant cells also contain chloroplasts and a permanent vacuole filled with sap.

Practice questions

1 Figure 1 shows a typical plant, animal, and bacterial cell.

Figure 1

- **a** Name the structures A, B, and C.
- **b** Describe the function of the nucleus in cells.
- c Which parts of a bacterial cell carry out the same function as the nucleus does in plant and animal cells?
 (2)
- d Calculate the length of each cell in μ m (1 μ m = 0.001 mm). Use the formula:
 - length on diagram = real length × magnification
 - i Plant cell
 - ii Animal cell
 - iii Bacterial cell
- Ribosomes make protein molecules for the cell.
 Suggest two possible uses for these protein molecules.
- f Suggest why there are no mitochondria in bacterial cells. (1)
- 2 The two plant cells in Figure 2 are very different because they have been specialised to carry out different functions.

Figure 2

- a Describe the function of each cell.
- **b** In this question you will be assessed on using good English, organising information clearly, and using specialist terms where appropriate.

Compare and contrast the structures of these two cells in relation to their function. (6)

3 The plant in pot A has been adequately watered and is healthy. The plant in pot B has not been given enough water and is wilting.

Figure 3

(4)

(2)

(3)

(2)

(5)

a Draw and label a stem cell from each plant.

Use the correct term to describe the state of each cell.

- b Explain in detail why the plant in pot A remains upright whilst the plant in pot B does not. (3)
- Some scientists wish to grow mouse skin cells in tissue culture. They know that the tissue culture liquid must have the same concentration of salts and sugars as the cytoplasm of the cell.

They made solutions at four different concentrations and added some mouse skin cells.

After 24 hours they removed some cells and observed them under a microscope.

The following table shows the results.

Test number	1	2	3	4	Control
Concentration of salts in mol/dm ³	0.24	0.26	0.28	0.30	Fresh cell from mouse
Appearance of cells	0		۲	0	۲

- a Name the term that describes a solution that has the same concentration as the contents of the cells. (1)
- b Which concentration of salts is suitable for the tissue culture liquid? (1)
- **c** In this question you will be assessed on using good English, organising information clearly, and using specialist terms where appropriate.

The concentration in test 1 is not suitable as it has damaged the cells.

Explain why the solution in test 1 has damaged the cells.

19

(6)

(4)