Published for OXFORD INTERNATIONAL AQA EXAMINATIONS

International GCSE CHEMISTRY

Lawrie Ryan Patrick Fullick Editor: Lawrie Ryan

Chemistry

Contents

1 2

How to use this book Practical skills

Chapter 1 Atomic structure	4
1.1 States of matter	4
1.2 Evidence for particles	6
1.3 History of the atom	8
1.4 Atoms	10
1.5 Atomic structure	12
1.6 The arrangement of electrons in atoms	14
1.7 Atoms and isotopes	16
Chapter summary questions	18
Practice questions	19
Chapter 2 Structure and bonding	20
2.1 Atoms into ions	20
2.2 Ionic bonding	22
2.3 Covalent bonding	24
2.4 Bonding in metals	26
2.5 Giant ionic structures	28
2.6 Simple molecules	30
2.7 Giant covalent structures	32
2.8 Giant metallic structures	34
2.9 Nanoscience	36
Chapter summary questions	38
Practice questions	39
Chapter 3 The periodic table	40
3.1 The periodic table	
3.2 Group 1 – the alkali metals	42
3.3 The transition elements	44
3.4 Group 7 – the halogens	46
3.5 Explaining trends	48
Chapter summary questions	50
Practice questions	51
Chapter 4 Metals	52
4.1 Useful metals	52
4.2 Iron and steels	54
4.3 The reactivity series	56
4.4 Displacement reactions	58
4.5 Metal carbonates	60
Chapter summary questions	62
Practice questions	63
Chapter 5 Electrolysis	64
5.1 Electrolysis	64
5.2 Changes at the electrodes	66
5.3 The extraction of aluminium	68
5.4 Electrolysis of brine	70
5.5 Electroplating	72
5.6 Electrolysing copper sulfate solution	74
Chapter summary questions	76
Practice questions	77

Chapter 6 Chemical analysis	78
6.1 Separating mixtures	78
6.2 Paper chromatography	80
6.3 Testing for gases	82
6.4 Tests for positive ions	84
6.5 Tests for negative ions	86
Chapter summary questions	88
Practice questions	89
Chapter 7 Acids, bases, and salts	90
7.1 Acids and alkalis	90
7.2 Making soluble salts from metals or	
insoluble bases	92
7.3 Making salts by neutralisation or precipitation	94
Chapter summary questions	96
Practice questions	97
Chapter 8 Quantitative chemistry	98
8.1 Chemical equations	98
8.2 Relative masses and moles	100
8.3 Percentages by mass and empirical formulae	102
8.4 Equations and calculations	104
8.5 The yield of a chemical reaction	106
8.6 Titrations	108
8.7 Titration calculations	110
8.8 Volumes of gases	112
Chapter summary questions	114
Practice questions	115
Chapter 9 Rates of reaction	116
9.1 How fast?	116
9.2 Collision theory and surface area	118
9.3 The effect of temperature	120
9.4 The effect of concentration or pressure	122
9.5 The effect of catalysts	124
Chapter summary questions	126
Practice questions	127
Chapter 10 Extent of reaction	128
10.1 Reversible reactions	128
10.2 Chemical equilibrium	130
10.3 Altering conditions	132
10.4 Making ammonia – the Haber process	134
10.5 The economics of the Haber process	136
10.6 The Contact process	138
Chapter summary questions	140
Practice questions	141
Chapter 11 Energy changes in	
chemical reactions	142
11.1 Exothermic and endothermic reactions	142
11.2 Using energy transfers from reactions	144
11.3 Energy and reversible reactions	146
11.4 Comparing the energy released by fuels	148

11.5 Energy transfers in solutions	150
11.6 Energy level diagrams	152
11.7 Bond dissociation energy calculations	154
11.8 Chemical cells and batteries	156
11.9 Fuel cells	158
Chapter summary questions	160
Practice questions	161
Chapter 12 Carbon compounds as fuels	162
12.1 Hydrocarbons	162
12.2 Fractional distillation of crude oil	164
12.3 Burning fuels	166
12.4 Alternative fuels	168
Chapter summary questions	170
Practice questions	171
Chapter 13 Other products from crude oil	172
13.1 Cracking hydrocarbons	172
13.2 Making polymers from alkenes	174
13.3 The properties of polymers	176
13.4 New and useful polymers	178
13.5 Plastic waste	180
Chapter summary questions	182
Practice questions	183

Chapter 14 Alcohols, carboxylic acids,	
and esters	184
14.1 Structures of alcohols, carboxylic	
acids, and esters	184
14.2 Properties and uses of alcohols14.3 Carboxylic acids and esters	186 188
Chapter summary questions	190
Practice questions	191
Experimental data handling	192
Investigations	192
Setting up investigations	194
Using data	196
Exam questions and answers	198
Glossary	202
Answers	207
Index	225
XOY	
$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	

How to use this book

This book has been written for you by experienced teachers and subject experts. It covers the information you need to know for your exams and is packed full of features to help you achieve the very best that you can.

Figure 1 Many diagrams are as important for you to learn as the text, so make sure you revise them carefully

Key words are highlighted in the text. You can look them up in the glossary at the back of the book if you are not sure what they mean.

Required practical

This feature helps you become familiar with key practicals. It may be a simple introduction, a reminder or the basis for a practical in the laboratory.

Summary questions

These questions give you the chance to test whether you have learned and understood everything in the topic. If you get any wrong, go back and have another look. They are designed to be increasingly challenging.

And at the end of each chapter you will find ...

Chapter summary questions

These will test you on what you have learned throughout the whole chapter, helping you to work out what you have understood and where you need to go back and revise.

Practice questions

These questions are examples of the types of questions you may encounter in your exam, so you can get lots of practice during your course.

Learning objectives

Each topic begins with key statements that you should know by the end of the lesson.

Study tip

Hints that give you important advice on things to remember and what to watch out for.

Did you know ...?

There are lots of interesting and often strange facts about science. This feature tells you about many of them.

O links

Links will tell you where you can find more information about what you are learning and how different topics link up.

Activity

An activity is linked to a main lesson and could be a discussion or task in pairs, groups or by yourself.

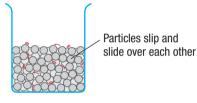
Key points

At the end of each topic are the important points that you must remember. They can be used to help with revision and summarising your knowledge.

Chapter 1 Atomic structure

1.1

Learning objectives


After this topic, you should know:

- there are three states of matter
- the arrangement and motion of the particles in each state of matter
- the names of the processes and energy changes involved in changing state.

Particles vibrate

Liquid

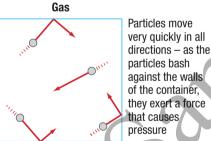


Figure 1 The particles in the three states of matter

States of matter

You can classify the majority of substances as solids, liquids, or gases. These are called the three **states of matter**.

Solids have a fixed shape and volume. They cannot be compressed. **Liquids** have a fixed volume, but they can flow and change their shape. Liquids occupy just slightly more space than when solid (water and ice are exceptions). **Gases** have no fixed shape or volume. They can be compressed easily.

To explain the properties of solids, liquids, and gases you use the kinetic theory of matter. It is based on the fact that all matter is made up of tiny particles and describes:

- the movement of the particles, and
- the average distance between particles

within each state of matter.

Look at the diagrams to the left that represent the three states of matter.

Each particle in a solid is touching its nearest neighbours and they remain in this fixed arrangement. They cannot move around, but they do vibrate constantly.

The particles in a liquid are also very close together but they can move past each other. This results in a constantly changing, random arrangement of particles.

The particles in a gas have much more space, on average, between them. They can move around at high speeds and in any direction. This means the particles have a random arrangement. The hotter the gas is, the faster the particles move. The pressure of a gas is caused by the particles colliding with the sides of the container. The more frequent and energetic the collisions are, the higher the pressure of the gas. So, in a sealed container, the pressure of the gas increases with temperature.

Changing state

If a solid is heated and changes directly to a gas without melting, that is, it does not pass through the liquid phase, the change of state is called sublimation.

Look at the changes of state that occur when water is heated and cooled:

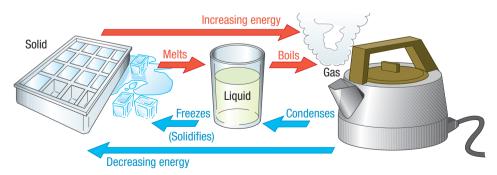


Figure 2 The changes of state in water

The hotter a solid is, the faster its particles vibrate. Eventually, the vibrations will be so strong that the particles begin to break free from their neighbours. At this point the solid starts to melt and become a liquid.

CO links

To find out how to indicate a substance's state in a balanced symbol equation, see Topic 8.1 'Chemical equations'. The hotter a liquid is, the faster its particles move around. As the temperature rises, more and more particles gain enough energy to escape from the surface of the liquid. Its rate of evaporation increases. Eventually, the liquid boils and bubbles of gas rise and escape from within the liquid.

Each change of state is reversible. They are examples of physical changes. No new substances are formed in changes of state. For example, water molecules (H_2O) are the same in ice as they are in liquid water or in water vapour.

Energy changes during changes of state

When you monitor the temperature of a solid as you heat it to beyond its melting point, the results are surprising. The temperature stops rising at the solid's melting point. It remains constant until all the solid has melted, and only then starts to rise again.

At its melting point, the energy provided in heating the solid is being absorbed to break the forces between the particles in the solid. Once all the solid has melted, the energy from the heat source raises the temperature of the liquid as expected.

Changes of state which involve particles becoming closer together, that is, condensing and freezing (solidifying), transfer energy to the surroundings as stronger forces form between particles.

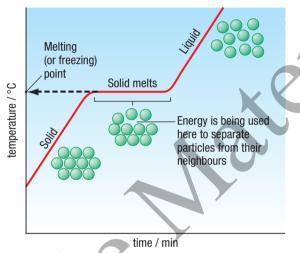
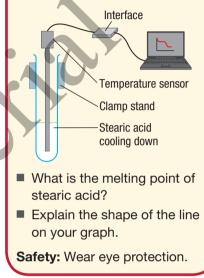


Figure 3 The heating curve of a solid

Summary questions

- **1** Draw a table to summarise the general properties of solids, liquids, and gases, as well as the average distance, arrangement, and movement of their particles.
- 2 Describe the changes that occur to the particles as a gas is cooled down to a temperature below its freezing point.

3 Name the following changes:

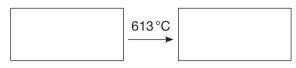

- **a** liquid \rightarrow solid **d** liquid \rightarrow gas
- **b** gas \rightarrow liquid **c** solid \rightarrow liquid
- **e** solid \rightarrow gas (in a single step)
- **4** Using the kinetic theory of matter, predict how temperature and pressure affect the density of a fixed mass of gas.
- **5** Explain why substances have different melting points in terms of their particles.
- **6** Evaporation is the change of state that occurs when a liquid changes to a gas below its boiling point. You can investigate the factors that affect the rate of evaporation using a wet paper towel on a high resolution electronic balance.

Plan an investigation into one factor that might affect the rate of evaporation of water from the paper towel, writing a brief method.

Practical

Cooling curve

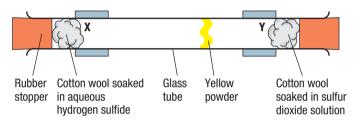
Heat a test tube of stearic acid clamped in a water bath until its temperature reaches about 75 °C. Then remove the test tube from the hot water and monitor the temperature as it falls. Plot or print off a graph of the results.



Key points

- The three states of matter are solids, liquids, and gases.
- The particles in a solid are packed closely together, fixed in their positions and vibrate.
- The particles in a liquid are also close together but can slip and slide over each other in random motion.
- The particles in a gas have, on average, lots of space between them and zoom around randomly.
- Melting and boiling take in energy from the surroundings as they take place, whereas freezing and condensing transfer energy to the surroundings when they occur.

Chapter summary questions


- 1 Arsenic (As) is a solid element that sublimes at 613 °C.
 - a What is sublimation?
 - **b** Assuming arsenic exists as atoms, draw a diagram to show the arrangement of some of its particles in boxes like the ones below:

c Which of these processes take in energy from the surroundings?

boiling melting freezing condensation sublimation

2 Look at the experiment below:

Hydrogen sulfide gas is released from the cotton wool at X and sulfur dioxide gas from the cotton wool at Y.

- **a** The yellow powder inside the glass tube forms after 10 minutes. Explain how the yellow powder forms using the kinetic theory of matter.
- **b** Name the physical process that this experiment demonstrates.
- **c** Why is the yellow powder formed nearer to end Y of the tube?
- **d** Draw a long tube and show the possible path of a hydrogen sulfide particle (molecule) travelling down the tube.
- e The original experiment was carried out at 18 °C. Predict any difference you might notice if the experiment was repeated at 25 °C.
- **3** Look at the data in the table below:

Chemical element	Melting point (°C)	Boiling point (°C)	Density (g/cm³)
Bromine	-7	59	3.12
Caesium	29	669	1.88
Fluorine	-220	-188	0.00158
Strontium	769	1384	2.6
Xenon	-112	-108	0.0055

- **a** What is the physical state of each element in the table at 25 °C?
- **b** Which element exists as a liquid over the widest range of temperature?
- **c** Explain the large differences in the densities of the elements in the table using the kinetic theory of matter.
- **d** What is the chemical symbol for atoms of each element in the table?
- e Classify each element in the table as a metal or a non-metal.
- **4 a i** Which sub-atomic particles are found in the nucleus?
 - ii What is the maximum number of electrons that can occupy each of the first two energy levels or shells?
 - **b** i Explain the overall charge on any atom.ii Define 'atomic number' and 'mass number'.
- **5** This question is about some of the elements in the periodic table.

You will need to use the periodic table to help you answer some parts of the question. See page 41.

- a Neon (Ne) is the 10th element in the periodic table.
 - i Is neon a metal or a non-metal?
 - ii Are there more metals or non-metals in the periodic table?
 - iii How many protons does an neon atom contain?
 - iv The mass number of a neon atom is 20. How many neutrons does it contain?
 - v State the name and number of the group to which neon belongs.
 - vi Name two other elements in the same group as neon.
 - vii Write the electronic structure of a neon atom.
 - viii What is special about the electronic structure of neon and the other elements in its group?
- ${\bf b}\,$ The element radium (Ra) has 88 electrons.
 - i How many protons are in the nucleus of each radium atom?
 - ii How many electrons does a radium atom have in its highest energy level (outermost shell)? How did you decide on your answer?
 - iii Is radium a metal or a non-metal?
 - iv Calcium is in the same group as radium. Its atomic number is 20. Write down its electronic structure.
 - All the isotopes of radium are radioactive. Give one medical and one industrial use of radioactive isotopes.

Practice questions

1 Use words from the list to complete the table to show the state of matter described.

gas liquid solid

Description	State
particles close together but not moving around	
particles very far apart	
particles close together but continuously moving around	

- 2 a Explain the difference between an element and a compound.
 - **b** Why is ammonia classified as a compound but air is classified as a mixture? (2)
 - c Name the change of state in each of these processes.
 - i $H_2O(g) \rightarrow H_2O(l)$ (1) ii $H_2O(I) \rightarrow H_2O(g)$ (1)

(2)

(2)

(2)

- iii $I_2(s) \rightarrow I_2(g)$ (1)
- 3 A crystal of copper(II) sulfate is placed at the bottom of a beaker of water and left for a few days.
 - a Describe the appearance of the liquid in the beaker after a few days.
 - **b** How does the appearance of the crystal change during the experiment? (1)
 - c Name two processes that occur during the experiment.
- 4 The diagram shows the apparatus used in a teacher demonstration.

ammonia solution (concentrated)

hydrochloric acid (concentrated)

- a Describe the observations you would make after a few minutes. (2)
- **b** Use state symbols to complete the symbol equation for the reaction that occurs.

$$NH_{3}(...) + HCI(...) \rightarrow NH_{4}CI(...)$$
(1)

c Explain how this experiment shows that ammonia molecules have a smaller mass than hydrogen chloride molecules. (1)

		e atoms in a sample of neon can be represented as Ne and $^{22}_{10}$ Ne.			
-	These atoms are isotopes.				
á	a Explain the term 'isotopes'.				
ł		Explain why isotopes have identical chemical properties.	(1)		
c Copy these statements and use numbers to					
		complete them. i The number of protons in an atom of ²⁰ ₁₀ Ne			
		is	(1)		
	ĺ	ii The number of electrons in an atom of $^{22}_{10}$ Ne	. ,		
		is	(1)		
		iii The number of neutrons in an atom of ²⁰ ₁₀ Ne is	(1)		
	i	iv The mass number of $^{22}_{10}$ Ne is	(1)		
(d	The relative atomic mass of neon is 20.2.			
	,	Which of the two isotopes is more abundant?	(1)		
5	she	ectrons in atoms are arranged in energy levels (or ells) at different distances from the nucleus. Copy ese statements and use numbers to complete them.			
	a	The maximum number of electrons in the first shell is	5		
		·	(1)		
		The maximum number of electrons in the second	(-1)		
		shell is	(1)		
		Atoms of sodium have electrons in shells.	(1)		
(The number of electrons in the third shell of an atom of phosphorus is	(1)		
(The atomic number of an atom with the electronic structure 2,8,6 is	(1)		

19