Published for OXFORD INTERNATIONAL AQA EXAMINATIONS

INTERNATIONAL AS LEVEL MATHEMATICS

יניטאיזינע אין איזאיזיין אין איזער אין איזאיזיע איז איזאין איזאין איזאין איזאין איזאין איזאין איזאין איזאין איז איזאין איזאינע דינאיזאין איזאין א

Sue Chandler Janet Crawshaw Joan Chambers

OXFORD

Contents

V
١

1 Expanding Brackets, Surds and Indices

1.1	Algebraic expressions	. 2
1.2	Expansion of Two Brackets	. 3
1.3	Square roots and other roots	. 6
1.4	Surds	. 7
1.5	Indices	10
Sum	mary	14
Revi	ew	14
Asse	ssment	15

2 Quadratic Polynomials and Equations

2.1	Quadratic polynomials	16
2.2	Quadratic equations	19
2.3	Solution by completing the square	22
2.4	The formula for solving a quadratic equation	23
2.5	Properties of the roots of a	
	quadratic equation	24
2.6	Simultaneous equations	27
Sum	imary	29
Revi	ew	29
Asse	essment	30

3 Algebraic Division

3.1	Division of a polynomial by $x - a$	32
3.2	The remainder theorem and the	
	factor theorem	33
3.3	The factors of $a^3 - b^3$ and $a^3 + b^3$	35
Sum	mary	36
Revi	ew	37
Asse	ssment	37

4 Functions and Graphs

4.1	Functions	40
4.2	Graphical interpretation of equations	43
4.3	Inequalities	46
4.4	Transformations of graphs	48
Sum	mary	52
Revi	ew	52
Asse	ssment	53

5 Coordinate Geometry

5.1	Lines joining two points		56
-----	--------------------------	--	----

5.2 Gradient
 59

 5.3 The equation of a straight line
 61

 5.4 Intersection
 66

 Summary
 67

 Review
 68

 Assessment
 68

6 Differentiation

6.1	Chords, tangents, normals and gradients	70
6.2	Differentiation	72
6.3	Gradients of tangents and normals	75
6.4	Increasing and decreasing functions	78
6.5	Stationary points	79
6.6	Maximum and minimum points	80
Sum	mary	85
Revie	ew	86
Asse	ssment	87

Integration

7.1	Indefinite integration	90
7.2	Using integration to find an area	92
7.3	The trapezium rule	97
Sum	mary	99
Revi	ew	99
Asse	ssment	100

8 Sequences and Series

8.1	Defining a sequence	102
8.2	Series	105
8.3	Arithmetic series	107
8.4	Geometric series	110
8.5	The binomial theorem	115
Sum	mary	120
Revie	ew	120
Asse	ssment	121

9 Coordinate Geometry and Circles

9.1	The equation of a circle	124
9.2	Geometric properties of circles	127
9.3	Tangents to circles	128
Sum	mary	131
Revie	ew	131
Asse	ssment	132

10 Trigonometry

10.1 Trigonometric ratios of acute angles	134
10.2 The sine rule and cosine rule	137
10.3 The area of a triangle	144
Summary	145
Review	145
Assessment	146

11 Trigonometric Functions and Equations

11.1 Angle units	148
11.2 The length of an arc	150
11.3 The area of a sector	152
11.4 The trigonometric functions	154
11.5 Solving trigonometric equations	159
Summary	162
Review	163
Assessment	163

12 **Exponentials and Logarithms**

12.1	Exponential functions	166
12.2	Logarithms	168
12.3	The laws of logarithms	170
12.4	Equations containing logarithms or x	
	as a power	172
Sum	mary	173
Revie	ew	173
Asse	ssment	174

13 Probability

13.1 Introduction to probability	
13.2 Combined events	
13.3 Conditional events	
13.4 Tree diagrams	200
13.5 Further applications	209
Summary	212
Review	214
Assessment	

14 Discrete Random Variables

14.1	Discrete variables	220
14.2	Discrete random variables	229
14.3	E(<i>X</i>), the expectation of <i>X</i>	235
14.4	The variance and standard deviation of X	243
14.5	Sum or difference of two independent random	n
	variables	249
14.6	Further applications	255
Sum	mary	258
Revie	ew	260
Assessment 2		

15 Bernoulli and Binomial Distributions

15.1	The Bernoulli distribution	266
15.2	The binomial distribution	269
15.3	The cumulative binomial distribution	
	function	276
15.4	Mean, variance and standard deviation of a	
	binomial distribution	283
15.5	Further applications	287
Sum	mary	290
Revie	ew	291
Asse	ssment	293

16 Displacement, Speed, Velocity and Acceleration

 16.1 Displacement, speed, velocity and acceleration
 296

 16.2 Displacement-time and velocity-time graphs
 300

 Summary
 308

 Review
 309

Assessment _____ 310

17 Motion in a Straight Line

17.1	Equations of motion with constant	
	acceleration	312
17.2	Free fall motion under gravity	317
17.3	Motion in a straight line with variable	
	acceleration	321
Sum	mary	324
Revie	ew	325
Assessment		326

18 Forces and Newton's Laws

18.1 Types of force	328
18.2 Newton's first law of motion	331
18.3 Connected particles	340
18.4 Dynamic friction	343
Summary	346
Review	347
Assessment	347

19 Momentum and Impulse

19.1 Momentum and impulse	350
19.2 Conservation of linear momentum	355
Summary	358
Review	358
Assessment	359
Glossary	362
Answers	366
Index	386

Expanding Brackets, Surds and Indices

Introduction

Working with algebraic expressions is needed in any mathematics course beyond GCSE. This chapter gives the facts and the practice necessary for you to develop these skills.

Recap

You need to remember...

- An algebraic expression does not contain an equals sign but an equation does contain an equals sign.
 For example, 3x² − 4 is an expression, 2x + 6y = 7 is an equation.
- ► If a string of numbers and letters are multiplied, the multiplication can be done in any order. For example, $2p \times 3q = 2 \times p \times 3 \times q = 2 \times 3 \times p \times q = 6pq$

Objectives

By the end of this chapter, you should know how to...

- Identify like and unlike terms.
- Expand brackets.
- Explain the meaning of a surd.
- Simplify an expression containing surds.
- Work with numbers in index form.

1.1 Algebraic expressions

The **terms** in an algebraic expression are the parts separated by a plus or minus sign.

Like terms contain the same letters to the same powers; like terms can be added or subtracted.

For example, 2ab and 5ab are like terms and can be added,

so

$$ab + 5ab = 7ab$$

Unlike terms contain different letters; they cannot be added or subtracted.

For example, *ab* and *ac* are unlike terms because they contain different letters. Also x^2 and x^3 cannot be added because they are to different powers.

Example 1

Simplify 5x - 3(4 - x)

Note

Remember that -3(4 - x)means 'multiply every term inside the bracket by minus 3. Remember that $(-3) \times (-x) = +3x$.

Coefficients

We can identify a term in an expression by using the letter, or combination of letters, involved.

For example

 $2x^2$ is 'the term in x^2 ,

3*xy* is 'the term in *xy*'.

The number (including its sign) in front of the letters is called the **coefficient**.

For example in the term $2x^2$, 2 is the coefficient of x^2

in the term 3*xy*, 3 is the coefficient of *xy*.

If no number is written in front of a term, the coefficient is 1 or -1, depending on the sign of the term.

For example, in the expression $x^3 + 5x^2y - y^3 + 2$

the coefficient of x^3 is 1

the coefficient of $x^2 y$ is 5

the coefficient of y^3 is -1.

The term 2 has no variable. This is called a constant term.

Exercise 1

Simplify.

- 1 $2x^2 4x + x^2$ **2** 5a - 4(a + 3)2y - y(x - y)4 $8pq - 9p^2 - 3pq$ 5 4xy - y(x - y)6 $x^3 - 2x^2 + x^2 - 4x + 5x + 7$ **8** $2(a^2-b)-a(a+b)$ Note 7 $t^2 - 4t + 3 - 2t^2 + 5t + 2$ 9 3-(x-4)10 5x-2-(x+7)**12** a(b-c)-c(a-b)**11** 3x(x+2) + 4(3x-5)-(x-4) means -1(x-4). 14 $x^{2}(x+7) - 3x^{3} + x(x^{2}-7)$ **13** 2ct(3-t) + 5t(c-11t)**15** $(3y^2 + 4y - 2) - (7y^2 - 20y + 8)$
- **16** Write down the coefficient of x in $x^2 7x + 4$.
- 17 What is the coefficient of xy^2 in the expression $y^3 + 2xy^2 7xy$?
- **18** For the expression $x^3 3x + 7$, write down the coefficient of
 - **a** x^3 **b** x^2

1.2 Expansion of Two Brackets

Expanding brackets means multiplying them out to remove the brackets. To expand (2x+4)(x-3) each term in the first bracket is multiplied by each term in the second bracket.

$$2 = 2x^{2} - 6x + 4x - 12$$

$$(2x + 4)(x - 3)$$

$$3 = 2x^{2} - 2x - 12$$

Exercise 2

Expand and simplify.

(x+2)(x+4)	2 $(x+5)(x+3)$	3 $(a+6)(a+7)$
(t+8)(t+7)	5 $(s+6)(s+11)$	6 $(2x+1)(x+5)$
(5y+3)(y+5)	8 $(2a+3)(3a+4)$	9 $(7t+6)(5t+8)$
(11s+3)(9s+2)	11 $(x-3)(x-2)$	12 $(y-4)(y-1)$
13 $(a-3)(a-8)$	14 $(b-8)(b-9)$	15 $(p-3)(p-12)$
16 $(2y-3)(y-5)$	17 $(x-4)(3x-1)$	18 $(2r-7)(3r-2)$
19 $(4x-3)(5x-1)$	20 $(2a-b)(3a-2b)$	21 $(x-3)(x+2)$
22 $(a-7)(a+8)$	23 $(y+9)(y-7)$	24 $(s-5)(s+6)$
25 $(q-5)(q+13)$	26 $(2t-5)(t+4)$	27 $(x+3)(4x-1)$
28 $(2q+3)(3q-5)$	29 $(x+y)(x-2y)$	(s+2t)(2s-3t)

Difference of two squares

The expansion of (x-4)(x+4) is a special case.

$$(x-4)(x+4) = x^2 - 4x + 4x - 16$$
$$= x^2 - 16$$

Any expansion of the form $(x + b)(x - b) = x^2 - b^2$ is known as the difference of two squares.

Squares

 $(2x+3)^2$ means (2x+3)(2x+3) $(2x+3)^2 = (2x+3)(2x+3)$ *.*..

 $=4x^{2}+12x+9$

 $(ax-b)^2 = a^2x^2 - 2abx + b^2$

In general, $(ax+b)^2 = a^2x^2 + (2)(ax)(b) + b^2$

 $=a^2x^2+2abx+b^2$

 $=(2x)^{2}+(2)(2x)(3)+(3)^{2}$

and

Exercise 3

Expand and simplify.

(x-2)(x+2)	2 $(5+x)(5-x)$	3 $(x+3)(x-3)$	N
(2x-1)(2x+1)	5 $(x-8)(x+8)$	6 (x-a)(x+a)	0
7 $(x-1)(x+1)$	8 $(3b+4)(3b-4)$	9 $(2y-3)(2y+3)$	th
10 $(ab+6)(ab-6)$	11 $(5x+1)(5x-1)$	12 $(xy+4)(xy-4)$	(a
Expand.			w
13 $(x+4)^2$	14 $(x+2)^2$	15 $(2x+1)^2$	(0
16 $(3x+5)^2$	$(2x+7)^2$	18 $(x-1)^2$	U
19 $(x-3)^2$	20 $(2x-1)^2$	21 $(4x-3)^2$	
22 $(5x-2)^2$	23 $(3t-7)^2$	24 $(x+y)^2$	
25 $(2q+9)^2$	26 $(3q-11)^2$	27 $(2x-5y)^2$	

28 Expand and simplify $(x-2)^2(3x-4)$. Write down the coefficients of x^2 and x.

ote

uestions 1 to 6 show nat the expansion of ax + b(ax - b) can be ritten down directly, so $ax + b(ax - b) = a^2x^2 - b^2$. se this result to expand the rackets in Questions 7 to 12.

Important expansions

These general results should be memorised.

 $(ax+b)^{2} = a^{2}x^{2} + 2abx + b^{2}$ $(ax-b)^{2} = a^{2}x^{2} - 2abx + b^{2}$ $(ax+b)(ax-b) = a^{2}x^{2} - b^{2}$

The next exercise has different expansions including some given above.

Example 2

Question

Expand (4p + 5)(3 - 2p)

(4p+5)(3-2p) = (5+4p)(3-2p) $= 15 - 10p + 12p - 8p^{2}$ $= 15 + 2p - 8p^{2}$

Harder expansions

Expanding expressions such as $(x-2)(x^2-x+5)$ should be done systematically.

First multiply each term of the second bracket by *x*, writing down the separate results as they are found. Then multiply each term of the second bracket by -2. Do not collect like terms at this stage.

 $(x-2)(x^2-x+5)$

 $= x^3 - x^2 + 5x - 2x^2 + 2x - 10$

Now collect like terms

```
=x^{3}-3x^{2}+7x-10
```

Example 3

Expand (x+2)(2x-1)(x+4)

Answer

 $(x+2)(2x-1)(x+4) = (x+2)(2x^2+7x-4)$ = 2x³ + 7x² - 4x + 4x² + 14x - 8 = 2x³ + 11x² + 10x - 8

Exercise 4

Expand.

1 $(2x-3)(4-x)$	2 $(x-7)(x+7)$
4 $(7p+2)(2p-1)$	5 $(3p-1)^2$
7 $(4-p)^2$	8 $(4t-1)(3-2t)$
(4x-3)(4x+3)	(1) $(3x+7)^2$
$(a-3b)^2$	14 $(2x-5)^2$
$(3a+5b)^2$	

(6-x)(1-4x)(5t+2)(3t-1) $(x+2y)^2$ (R+3)(5-2R)(7a+2b)(7a-2b)

Note

First expand the last two brackets.

Expanding Brackets, Surds and Indices

4) Find the coefficients of x^3 and x^2 in the expansion of (x-4)(2x+3)(3x-1).

42 State the coefficient of x^6 in the expansion of $(2x^3 - 3)^3$.

1.3 Square roots and other roots

When a number is given as the product of two equal factors, that factor is called the **square root** of the number, for example

 $4 = 2 \times 2 \implies 2$ is the square root of 4.

This is written $2 = \sqrt{4}$.

-2 is also a square root of 4, as $4 = -2 \times -2$ but $\sqrt{4} \neq -2$.

The symbol $\sqrt{}$ is used only for the positive square root.

So, although $x^2 = 4 \Rightarrow x = \pm 2$, the only value of $\sqrt{4}$ is 2. The negative square root of 4 is written $-\sqrt{4}$.

When both square roots are wanted, we write $\pm \sqrt{4}$.

Cube roots

When a number is given as the product of three equal factors, that factor is called the **cube root** of the number.

For example $27 = 3 \times 3 \times 3$ so 3 is the cube root of 27.

This is written $\sqrt[3]{27} = 3$.

Other roots

6

The notation used for square and cube roots can be extended to represent fourth roots, fifth roots, and so on.

For example $16 = 2 \times 2 \times 2 \times 2 \Rightarrow \sqrt[4]{16} = 2$

and $243 = 3 \times 3 \times 3 \times 3 \times 3 \Rightarrow \sqrt[5]{243} = 3$

In general, if a number, *n*, can be written as the product of *p* equal factors then each factor is called the p^{th} root of *n* and is written $\sqrt[p]{n}$.

The result from question 37 should be memorized: $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

For question 42 use the general result of the expansion of $(a + b)^3$ and replace *a* by $2x^3$ and *b* by -3.

Note

The symbol \Rightarrow means gives or implies.

Summary

Expansions

 $(ax + b)^{2} = a^{2}x^{2} + 2abx + b^{2}$ $(ax - b)^{2} = a^{2}x^{2} - 2abx + b^{2}$ $(ax + b)(ax - b) = a^{2}x^{2} - b^{2}$ $(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}.$

Surds

The denominator of $\frac{a}{\sqrt{b}}$ can be rationalized by multiplying numerator and denominator by \sqrt{b} . The denominator of $\frac{a}{b+\sqrt{c}}$ can be rationalized by multiplying numerator and denominator by $b-\sqrt{c}$.

Indices

 $a^{n} \times a^{m} = a^{n+m}$ $a^{n} \div a^{m} = a^{n-m}$ $(a^{n})^{m} = a^{nm}$ $\sqrt[n]{a} = a^{\frac{1}{n}}$ $a^{0} = 1$

Review

14

- **1** Simplify $a^2(3-a) (a-a^3)$.
- 2 Expand and simplify (2x-7)(x+5).
- **3** Expand and simplify $(4x 3)^2$.
- 4 Expand and simplify (2x-3)(2x+3).
- **5** Expand and simplify (3 5x)(2x+1).
- 6 Expand and simplify $(2x 3y)(x + y)^2$.
- **7** State the coefficient of a^2b in the expansion of $(3a 2b)^3$.
- 8 Express $\sqrt{150}$ in terms of the simplest possible surd.
- **9** Expand $(4-3\sqrt{3})^2$ and simplify if possible.

For Questions 10, 11 and 12 state the letter that gives the correct answer.

10
$$\frac{1-\sqrt{2}}{1+\sqrt{2}}$$
 is equal to
a 1 **b** -1 **c** $3-2\sqrt{2}$ **d** $2\sqrt{2}-3$
11 $\frac{p^{-\frac{1}{2}} \times p^{\frac{3}{4}}}{p^{-\frac{1}{4}}}$ simplifies to
a $p^{\frac{1}{2}}$ **b** $p^{-\frac{1}{2}}$ **c** $p^{\frac{3}{4}}$ **d** p

(12)
$$\frac{5^{\frac{1}{4}} \times 5 \times 5^{\frac{1}{6}}}{\sqrt{5}} = 5^{p}$$
. The value of p is
a $-\frac{1}{12}$ **b** $\frac{11}{12}$ **c** $1\frac{11}{12}$

Assessment

Given that $\frac{1}{27} = 3^r$ state the value of *r*. a Given that $\sqrt{3} = 3^r$ state the value of *r*. b The expression $(x-3)(x^2-5x+6)$ can be written in the form **2** a $x^3 + px^2 + qx - 18$. Show that p = -8 and find the value of q. The expression $(x^2+6)^3$ can be written in the form $x^6 + px^4 + qx^2 + 216$. b Find the values of *p* and *q*. Show that $\sqrt{72} = p\sqrt{2}$ giving the value of *p*. **3** a **b** Show that $\frac{\sqrt{8} + \sqrt{18}}{\sqrt{2}} = n$ where *n* is an integer. State the value of *n*. Show that $\frac{2\sqrt{2}-1}{2-\sqrt{2}}$ can be expressed in the form $p + q\sqrt{2}$ where p and q С are rational numbers. State the values of *p* and *q*. **4 a** Express $\frac{2^{\frac{1}{2}} \times 2^{-\frac{1}{4}}}{2^{\frac{3}{4}}}$ as 2^{*r*}. State the value of *r*. **b** Express $\left(\frac{36x^2}{16}\right)^{\frac{1}{2}}$ in the form ax^b giving the values of a and b. Give the value of *a* as a fraction its simplest form. **5** a Expand $(x-1)^2(2x+3)$. **b** Find the coefficients of x^2 and x in the expansion of (x-2)(2x+3)(x+2). 6ai Simplify $(3\sqrt{2})$ ii Show that $(3\sqrt{2}-2)^2 + (3+2\sqrt{2})^2$ is an integer and find its value. **b** Express $\frac{4\sqrt{5}-7\sqrt{2}}{2\sqrt{5}+\sqrt{2}}$ in the form $m-\sqrt{n}$, where *m* and *n* are integers. AQA MPC1 January 2012 7 A rectangle has length $(9+5\sqrt{3})$ cm and area $(15+7\sqrt{3})$ cm². Find the width of the rectangle, giving your answer in the form $(m+n\sqrt{3})$ cm, where *m* and *n* are integers.

AQA MPC1 June 2014