
Published for OXFORD INTERNATIONAL AQA EXAMINATIONS

Contents

A2	Pure		5	Differentiation	
Ale and alete leads			5.1	The derivative of e ^x	
Abou	ıt this book	v	5.2	The derivative of $\ln x$	
1	Functions		5.3	The derivatives of $\sin x$ and $\cos x$	63
1.1		2	5.4	Differentiating products, quotients and	
1.1	Functions Composite functions			composite functions	
1.3	Inverse functions		5.5	Implicit functions	70
1.4	Modulus functions		5.6	Parametric equations	72
1.5	Combinations of transformations		5.7	Finding $\frac{dy}{dx}$ using parametric equations	73
1.6	Simplification of rational functions		Sun	nmary	77
1.7	Algebraic division		Revi	lew	78
	Partial fractions		Asse	essment	80
	mary			K C	
			6	Integration	
	ew		6.1	Standard integrals	82
Asse	ssment	21	6.2	Integrating products by substitution	86
2	Binomial Series		6.3	Integration by parts	
2.1	The binomial series for any value of n	24	6.4		91
2.1	Approximations		6.5	Special techniques for integrating some	
	mary			trigonometric functions	
	•		6.6	Volume of revolution	97
ReviewAssessment				nmary	
71330	ssirient	30		iew	
3	Trigonometric Functions and		Asse	essment	102
•	Formulae		_	D:66	
3.1	The inverse trigonometric functions	32	7	Differential Equations	
3.2	The reciprocal trigonometric functions		7.1	1	
3.3	Trigonometric formulae			separable variables	104
3.4	Compound angle formulae		7.2	Natural occurrence of differential	
3.5	Expressions of the form			equations	
0.0	$f(\theta) = a \cos \theta + b \sin \theta$	42		imary	
3.6	Double angle formulae			iew	
	mary		Asse	essment	112
		48	•	Normania al Matte e de	
ReviewAssessment				Numerical Methods	
11000			8.1	Approximately locating the roots of an	
4	Exponential and Logarithmic			equation	
	Functions		8.2	Using the iteration $x_{n+1} = g(x_n)$	116
4.1	Exponential growth and decay	50	8.3	Rules to find the approximate value of an	
4.2	The exponential function			area under a curve	
4.3	Natural logarithms			nmary	
4.4	The logarithmic function			iew	
	mary		Asse	essment	122
	·				

Review _____ 56 Assessment _____ 56

9	Vectors		13	The Normal Distribution	
9.1	Properties of vectors	124	13.1	The normal distribution	245
9.2	Position vectors		13.2	The standard normal variable, Z	247
9.3	The location of a point in space	127	13.3	Standardising any normal variable	252
9.4	Operations on cartesian vectors	128	13.4	Finding the z-value that gives a	
9.5	Properties of a line joining two points			known probability	258
9.6	The equation of a straight line		13.5	Finding <i>x</i> for any normal variable	
9.7	Pairs of lines		13.6	Finding an unknown mean or	
9.8	The scalar product			standard deviation or both	263
9.9	The coordinates of the foot of the		13.7	Sum of independent normal	-
	perpendicular from a point to a line	141		random variables	268
Sum	mary		13.8	Further applications	
	ew			nary	
	ssment			w	
11000		110		sment	
A2	Statistics		110000		200
			14	Estimation	
10	The Poisson Distribution		14.1	Sampling	284
10.1	The Poisson distribution	149	14.2	The sample mean \bar{X}	290
	Cumulative Poisson probability tables		14.3	Distribution of the sample mean	
	The Poisson distribution as a limiting case			Further applications	
	of the binomial distribution	161		nary	
10.4	The sum of independent Poisson			W	
	variables	164		sment	
10.5	Further applications		/		••
	mary		15	Hypothesis Tests	
	ew		15.1	Testing a population proportion, <i>p</i>	313
	ssment		15.2	Testing a Poisson mean, λ	
			15.3	Type I and Type II errors	
11	Continuous Random Variables		15.4	Introduction to testing a	
	Continuous random variables		1011	population mean μ	329
	Cumulative distribution function		15.5	One-tailed and two-tailed tests	
	Expectation of X		15.6	Case 1: Testing the mean of a normal	001
11.4	Variance of X	201	10.0	distribution with known variance	333
11.5	Independent continuous random	201	15.7	Case 2: Test for the mean of a distribution	000
11.0	variables	205	10	using a normal approximation	3/10
116	Further applications	209	15.8	The <i>t</i> -distribution	
	mary		15.9	Case 3: Test for the mean of a normal	040
	ew		10.5	distribution with unknown variance	
	ssment			and small sample size	3/17
ASSC	SSITIETIC	211	15 10	Further applications	
12	The Exponential Distribution				
	The exponential distribution	221		nary	
		221		W	
12,2	Link between Poisson and exponential	220	Assess	sment	ა02
100	distributions		Class	0.893	205
	'No memory' property			ary	
	Further applications			er	
	mary		Index		401
	ew				
Asse	ssment	241			

1 Functions

Introduction

This chapter extends the work on functions introduced at AS-level and gives various methods for expressing algebraic fractions in simpler forms. These methods are needed later in the course for integrating and differentiating fractions.

Recap

You will need to remember...

- ► The properties and the shapes of the graphs of linear, quadratic, exponential and trigonometric functions.
- ► The effect of simple transformations on a graph, including translations, one-way stretches and reflections in the *x* and *y*-axes.
- ► The Cartesian equation of a curve gives the relationship between the *x* and *y*-coordinates of points on the curve.
- ▶ How to complete the square for a quadratic function.
- ► How to factorise quadratic expressions.
- ➤ The remainder theorem.

Objectives

By the end of this chapter, you should know how to...

- Define a function, range of a function and domain of a function.
- Introduce inverse functions, composite functions and modulus functions.
- Use combinations of transformations to help to sketch graphs.
- Simplify an algebraic fraction by dividing by common factors.
- Decompose algebraic fractions into simpler fractions.

1.1 Functions

When you substitute any number for x in the expression $x^2 - 2x$, you get a single answer.

For example when x = 3, $x^2 - 2x = 3$.

However, when you substitute a positive number for x in the expression $\pm \sqrt{x}$, you have two possible answers.

For example when x = 4, $\pm \sqrt{x} = -2$ or 2.

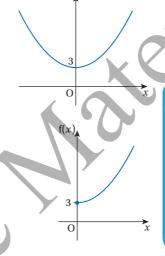
A *function* of one variable is such that when a number is substituted for the variable, there is only one answer.

Therefore $x^2 - 2x$ is an example of a function f and can be written as $f(x) = x^2 - 2x$. However, $\pm \sqrt{x}$ is not a function of x because any positive value of x gives two answers.

Domain and range

The set of values which the variable in a function can take is called the *domain* of the function.

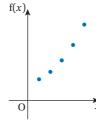
The domain does not have to contain all possible values of the variable; it can be as wide, or as restricted, as needed. Therefore to define a function fully, the domain must be stated.


If the domain is not stated, assume that it is the set of all **real numbers** (the set of real numbers is denoted by \mathbb{R}).

For each domain, there is a corresponding set of values of f(x). These are values which the function can take for values of x in that particular domain. This set is called the *range* of the function.

Look at the expression $x^2 + 3$.

A function f for this expression can be defined over any domain. Some examples, with their graphs are given.


- 1 $f(x) = x^2 + 3$ for $x \in \mathbb{R}$ (the symbol \in means 'is a member of'). The range is $f(x) \ge 3$.
- 2 $f(x) = x^2 + 3$ for $x \ge 0$. The range is also $f(x) \ge 3$.
- 3 $f(x) = x^2 + 3$ for x = 1, 2, 3, 4, 5. The range is the set of numbers 4, 7, 12, 19, 28.

f(x)

Note

The point on the curve where x = 0 is included and this is denoted this by a solid dot. If the domain were x > 0, then the point would not be part of the curve and this is indicated by a hollow dot.

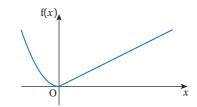
Note

This time the graphical representation consists of just five separate points.

Example 1

The function, f, is defined by $f(x) = x^2$ for $x \le 0$ and f(x) = x for x > 0.

- a Find f(4) and f(-4).
- **b** Sketch the graph of f(x).
- **c** Give the range of f.
- Answer
- $\mathbf{a} \quad \text{For } x > 0, \ \mathbf{f}(x) = x,$
 - therefore f(4) = 4.
 - For $x \le 0$, $f(x) = x^2$,


therefore $f(-4) = (-4)^2 = 16$.

(continued)

(continued)

b To sketch the graph of a function, use what you know about lines and curves in the *xy*-plane.

So f(x) = x for x > 0 is the part of the line y = x which corresponds to positive values of x, and $f(x) = x^2$ for $x \le 0$ is the part of the parabola $y = x^2$ that corresponds to negative values of x.

c The range of f is $f(x) \ge 0$.

Exercise 1

1 Find the range of f in each of the following cases.

a
$$f(x) = 2x - 3$$
 for $x \ge 0$

b
$$f(x) = x^2 - 5$$
 for $x \le 0$

c
$$f(x) = 1 - x$$
 for $x \le 1$

d
$$f(x) = \frac{1}{x}$$
 for $x \ge 2$

- 2 Sketch the graph of each function given in question 1.
- The function f is such that f(x) = -x for x < 0 and f(x) = x for $x \ge 0$.
 - **a** Find the value of f(5), f(-4), f(-2) and f(0).
 - **b** Sketch the graph of the function.
- 4 The function f is such that f(x) = x for $0 \le x \le 5$ and f(x) = 5 for x > 5.
 - a Find the value of f(0), f(2), f(4), f(5) and f(7)
 - **b** Sketch the graph of the function.
 - **c** Give the range of the function.

1.2 Composite functions

Look at the two functions f and g given by $f(x) = x^2$ and $g(x) = \frac{1}{x}$ for $x \ne 0$.

When g(x) replaces x in f(x) this gives the **composite function**

$$f[g(x)] = f\left(\frac{1}{x}\right) = \frac{1}{x^2}$$
 for $x \neq 0$

A composite function formed this way is also called a **function of a function** and it is denoted by fg.

For example, if $f(x) = 3^x$ and g(x) = 1 - x then gf(x) means the function g of f(x).

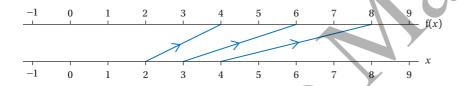
$$\Rightarrow \qquad gf(x) = g(3^x) = 1 - 3^x$$

Also
$$fg(x) = f(1-x) = 3^{(1-x)}$$

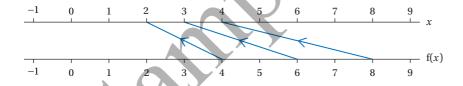
This example shows that gf(x) is *not* always the same as fg(x).

Exercise 2

- 1 The functions f, g and h are defined by $f(x) = x^2$, $g(x) = \frac{1}{x}$ for $x \ne 0$ and h(x) = 1 x.
 - **a** fg(x)
- **b** f h(x)
- \mathbf{c} hg(x)
- **d** hf(x)


 $\mathbf{e} \quad \mathrm{gf}(x)$

- When f(x) = 2x 1 and $g(x) = x^3$ find the value of
 - **a** gf(3)
- **b** fg(2)
- \mathbf{c} fg(0)
- **d** gf(0)
- 3 Given that f(x) = 2x, g(x) = 1 + x and $h(x) = x^2$, find
 - $\mathbf{a} \quad hg(x)$
- **b** gh(x)
- \mathbf{c} gf(x)
- 4 When $f(x) = \sin x$ and g(x) = 3x 4 find
 - \mathbf{a} fg(x)
- **b** gf(x)


1.3 Inverse functions

Look at the function f where f(x) = 2x for x = 2, 3, 4.

The domain of f is $\{2, 3, 4\}$ and the range of f is $\{4, 6, 8\}$. The relationship between the domain and range is shown in the arrow diagram.

It is possible to reverse this process, so that each member of the range can be mapped back to the corresponding member of the domain by halving each member of the range.

This process can be expressed algebraically.

When x = 4, 6, 8, then $x \to \frac{1}{2}x$ maps 4 to 2, 6 to 3 and 8 to 4.

This reverse mapping is a function in its own right and it is called the **inverse** function of f where f(x) = 2x.

Denoting this inverse function by f^{-1} we can write $f^{-1}(x) = \frac{1}{2}x$ for x = 4, 6, 8. The function f(x) = 2x for $x \in \mathbb{R}$ also has an inverse function, given by $f^{-1}(x) = \frac{1}{2}x$

which also has domain $x \in \mathbb{R}$.

If a function g exists that maps the range of f back to its domain,

then g is called the inverse of f and it is denoted by f⁻¹.

Summary

- A function f where f(x) is any expression involving one variable which gives a single value of f(x) for each value of x.
- ► The set of values which the variable in a function can take is called the domain of the function.
- For each domain, there is a corresponding set of values of f(x). These are values which f(x) can take for values of x in that particular domain. This set is called the range of the function.
- ► The composite function fg means that g(x) replaces x in f(x).
- ▶ If a function g exists that maps the range of f back to its domain, then g is called the inverse of f and it is denoted by f^{-1} .
- ▶ When curve y = f(x) is reflected in the line y = x, the equation of the reflected curve is found by interchanging x and y in the equation y = f(x).
- ▶ When the equation of the reflected curve is y = g(x), g is called the inverse of f, so $g = f^{-1}$.
- The modulus of f(x) is written as |f(x)| and it equals the positive value of f(x), whether f(x) itself is positive or negative.
- ► A rational expression can be simplified by factorising the numerator and the denominator and then dividing both by any common factors.
- ► A proper fraction can be decomposed into partial fractions and the form of the partial fractions depends on the form of the factors in the denominator.
- ► A linear factor gives a partial fraction of the form $\frac{A}{ax+b}$.
- A repeated factor gives two partial fractions of the form $\frac{A}{ax+b} + \frac{B}{(ax+b)^2}$.
- ▶ When the fraction is improper it must first be expressed as the sum of a polynomial and a proper fraction, and can then be decomposed into partial fractions.

Review

- 1 The function f is defined by $f(x) = \sqrt{x-1}$ for x > 1.
 - **a** Find the range of f.
 - **b** Find the value of f(10).
- 2 The function f is defined by

$$f(x) = \sin x$$
 for $0 \le x < \pi$
 $f(x) = \pi - x$ for $\pi \le x < 2\pi$.

- **a** Sketch the graph of f(x) for $0 \le x < 2\pi$.
- **b** Find the range of f.
- 3 The functions f and g are defined by $f(x) = \sin x$ and $g(x) = \sqrt{x}$ both for $x \ge 0$.
 - **a** Find gf(x).
 - **b** State a domain of gf(x) so that gf has real values.
- 4 a Solve the equation |x+2|=1-x.
 - **b** Show that there are no values of *x* for which |x| + 1 = x |x|.

- **5** Describe a sequence of transformations that maps the graph of $y = 2^x$ to the graph of $y = 3 + 2^{-x}$.
- 6 Simplify

a
$$\frac{x^2-9}{2x-6}$$

$$\mathbf{b} \quad \frac{4x^2 - 25}{4x^2 + 20x + 25}$$

- 7 Express $\frac{x-3}{x+6}$ as a number plus a proper fraction.
- 8 Express $\frac{3x^2-5x+1}{x+3}$ as a linear polynomial plus a proper fraction.
- Express $\frac{x^3 4x^2 + 5}{x 1}$ as a quadratic polynomial plus a proper fraction.
- 10 Express in partial fractions.

a
$$\frac{4}{(2x+1)(x-3)}$$

b
$$\frac{(3x-2)}{(x+1)(4x-3)}$$
 c $\frac{2t}{(t^2-1)}$

$$\mathbf{c} = \frac{2t}{(t^2-1)}$$

11 Express in partial fractions.

a
$$\frac{x+4}{(x+3)(x-5)}$$

b
$$\frac{(2x-3)}{(x-2)(4x-3)}$$
 c $\frac{4x^2}{4x^2-9}$

$$\mathbf{c} \quad \frac{4x^2}{4x^2-9}$$

12 Express in partial fractions.

a
$$\frac{3x}{2x^2-2x-4}$$

b
$$\frac{3x-1}{x^2(x-3)}$$

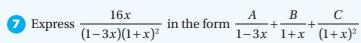
Assessment

- 1 The function f is defined by $f(x) = \sqrt{x-1}$ for $x \ge 1$.
 - **a** State the domain and range of f and find $f^{-1}(x)$.
 - **b** Solve the equation $f^{-1}(x) = 2x$.
- 2 a Express $\frac{x^2}{x^2-4}$ as a linear function plus a proper fraction.
 - **b** Hence express $\frac{x^2}{x^2-4}$ in partial fractions.
- **3** a Describe a sequence of two transformations that maps the graph of y = |x + 1| to the graph of y = 1 - |1 + x|.
 - **b** Sketch the graph of y = 1 |1 + x|.
 - **c** Find the coordinates of the points of intersection of the graphs of y = |x + 1| and y = 1 - |1 + x|.
 - **d** Hence find the possible values of x for which |x+1| > 1 |1+x|.
- Express each rational function in partial fractions.

$$a \frac{4}{x^2 - 7x - 8}$$

b
$$\frac{2x-1}{(2x+1)(x-2)^2}$$
 c $\frac{3}{x(2x+1)}$

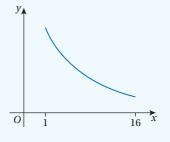
$$\mathbf{c} = \frac{3}{x(2x+1)}$$


- **5** a Sketch the graph of $f(x) = \cos x$ for the domain $0 \le x \le 2\pi$.
 - **b** State the range of f.
 - **c** Given that $g(x) = 1 |\cos x|$, find fg(x).
 - **d** Find the value of $\operatorname{fg}\left(\frac{\pi}{2}\right)$.

6 The curve with equation $y = \frac{63}{4x-1}$ is sketched below for $1 \le x \le 16$.

The function f is defined by $f(x) = \frac{63}{4x-1}$ for $1 \le x \le 16$.

- **a** Find the range of f.
- **b** The inverse of f is f^{-1} .
 - i Find.
 - ii Solve the equation $f^{-1}(x) = 1$.
- **c** The function g is defined by $g(x) = x^2$ for $-4 \le x \le -1$
 - i Write down an expression for fg(x).
 - ii Solve the equation fg(x) = 1.


AQA MPC3 January 2012

AQA MPC4 June 2014 (part question)

- 8 a Sketch the curve with equation y = 4 |2x + 1|, indicating the coordinates where the curve crosses the axes.
 - **b** Solve the equation x = 4 |2x + 1|.
 - **c** Solve the inequality x < 4 |2x + 1|.
 - **d** Describe a sequence of two geometrical transformations that maps the graph of y = |2x + 1| onto the graph of y = 4 |2x + 1|.

AQA MPC3 June 2015

