Published for OXFORD INTERNATIONAL AQA EXAMINATIONS

International A2 MATHEMA **Pure and Me**

RUITIN

Sue Chandler

Contents

A2 Pure

About this book v		
1	Functions	
1.1	Functions	
1.2	Composite functions	
1.3	Inverse functions	5
1.4	Modulus functions	
1.5	Combinations of transformations	
1.6	Simplification of rational functions	
1.7	Algebraic division	
1.8	Partial fractions	
Sum	mary	20
Revi	ew	20
Asse	ssment	21

2 **Binomial Series**

2.1 The	binomial series for any value of <i>n</i>	24
2.2 App	roximations	27
Summary	7	29
Review		30
Assessme	ent	30

3 Trigonometric Functions and Formulae

3.1	The inverse trigonometric functions	32
3.2	The reciprocal trigonometric functions	34
3.3	Trigonometric formulae	36
3.4	Compound angle formulae	39
3.5	Expressions of the form	
	$f(\theta) = a\cos\theta + b\sin\theta$	42
3.6	Double angle formulae	44
Sum	mary	47
Revie	ew	48
Asse	ssment	49

4 Exponential and Logarithmic Functions

4.1	Exponential growth and decay	50
4.2	The exponential function	53
4.3	Natural logarithms	54
4.4	The logarithmic function	55
Sum	mary	56
Revi	ew	56
Asse	ssment	56

5 Differentiation

5.1	The derivative of e ^{<i>x</i>}	58
5.2	The derivative of ln <i>x</i>	60
5.3	The derivatives of sin <i>x</i> and cos <i>x</i>	63
5.4	Differentiating products, quotients and	
	composite functions	64
5.5	Implicit functions	70
5.6	Parametric equations	72
5.7	Finding $\frac{dy}{dx}$ using parametric equations	73
Sum	mary	77
Revi	ew	78
Asse	ssment	80

6 Integration

6.1	Standard integrals	82
6.2	Integrating products by substitution	86
6.3	Integration by parts	89
6.4	Integrating fractions	91
6.5	Special techniques for integrating some	
	trigonometric functions	95
6.6	Volume of revolution	97
Sum	mary 1	.00
Revie	ew 1	.01
Asse	ssment 1	.02

7 Differential Equations

7.1	First order differential equations with	
	separable variables	104
7.2	Natural occurrence of differential	
	equations	107
Sum	mary	111
Revi	ew	112
Asse	Assessment 1	

8 Numerical Methods

8.1	Approximately locating the roots of an	
	equation	114
8.2	Using the iteration $x_{n+1} = g(x_n)$	116
8.3	Rules to find the approximate value of an	
	area under a curve	119
Sum	mary	121
Revie	ew	122
Asse	ssment	122

9 Vectors

9.1	Properties of vectors	124
9.2	Position vectors	127
9.3	The location of a point in space	127
9.4	Operations on cartesian vectors	128
9.5	Properties of a line joining two points	132
9.6	The equation of a straight line	134
9.7	Pairs of lines	137
9.8	The scalar product	139
9.9	The coordinates of the foot of the	
	perpendicular from a point to a line	141
Sum	mary	144
Revi	ew	145
Asse	ssment	146

A2 Mechanics

10 Mathematical Modelling and Kinematics

10.1 Mathematical modelling	148
10.2 Vectors and kinematics	151
Summary	155
Review	155
Assessment	156

11 Forces in Equilibrium, Friction and Moments

11.1 Types of force and drawing diagrams	158
11.2 The resultant of coplanar forces	160
11.3 Concurrent forces in equilibrium	
11.4 Moments and rigid objects	X
in equilibrium	170
Summary	180
Review	180
Assessment	181

12 Centres of Mass

12.1 Definition of centre of mass	184
12.2 The centre of mass of a system of particles	186
12.3 The centre of mass of a composite lamina	190
12.4 Suspended bodies	194
Summary	198
Review	198
Assessment	199

13 Motion in One, Two and Three Dimensions

13.1	Linear motion with constant acceleration	202
13.2	Newton's Law applied to motion with variable	e
	acceleration in two or three dimensions	205
13.3	Projectiles	207
Sum	mary	215
Revie	ew	216
Assessment		. 217

14 Work, Power and Energy

14.1 Work	
14.2 Power	225
14.3 Energy	228
Summary	237
Review	238
Assessment	238

15 Uniform Circular Motion

15.1 Angular velocity and acceleration	240
15.2 Motion in a horizontal circle	245
15.3 The conical pendulum	248
Summary	251
Review	251
Assessment	252
Glossary	254
Answers	256
Index	283

Functions

Introduction

This chapter extends the work on functions introduced at AS-level and gives various methods for expressing algebraic fractions in simpler forms. These methods are needed later in the course for integrating and differentiating fractions.

Recap

You will need to remember...

- ► The properties and the shapes of the graphs of linear, quadratic, exponential and trigonometric functions.
- ► The effect of simple transformations on a graph, including translations, one-way stretches and reflections in the *x* and *y*-axes.
- The Cartesian equation of a curve gives the relationship between the x- and y-coordinates of points on the curve.
- ▶ How to complete the square for a quadratic function.
- ► How to factorise quadratic expressions.
- ► The remainder theorem.

1.1 Functions

When you substitute any number for *x* in the expression $x^2 - 2x$, you get a single answer.

For example when x = 3, $x^2 - 2x = 3$.

However, when you substitute a positive number for *x* in the expression $\pm \sqrt{x}$, you have two possible answers. For example when $x = 4, \pm \sqrt{x} = -2$ or 2.

A *function* of one variable is such that when a number is substituted for the variable, there is only one answer.

Therefore $x^2 - 2x$ is an example of a function f and can be written as $f(x) = x^2 - 2x$. However, $\pm \sqrt{x}$ is not a function of *x* because any positive value of *x* gives two answers.

Domain and range

The set of values which the variable in a function can take is called the *domain* of the function.

Objectives

By the end of this chapter, you should know how to...

- Define a function, range of a function and domain of a function.
 - Introduce inverse functions, composite functions and modulus functions.
 - Use combinations of transformations to help to sketch graphs.
- Simplify an algebraic fraction by dividing by common factors.
- Decompose algebraic fractions into simpler fractions.

The domain does not have to contain all possible values of the variable; it can be as wide, or as restricted, as needed. Therefore to define a function fully, the domain must be stated.

If the domain is not stated, assume that it is the set of all **real numbers** (the set of real numbers is denoted by \mathbb{R}).

Look at the expression $x^2 + 3$.

A function f for this expression can be defined over any domain. Some examples, with their graphs are given.

2 $f(x) = x^2 + 3$ for $x \ge 0$. The range is also $f(x) \ge 3$.

5 $f(x) = x^2 + 3$ for x = 1, 2, 3, 4, 5. The range is the set of numbers 4, 7, 12, 19, 28.

Note

f(x)

0

0

f(x)

0

The point on the curve where x = 0 is included and this is denoted this by a solid dot. If the domain were x > 0, then the point would not be part of the curve and this is indicated by a hollow dot.

Note

x

×

This time the graphical representation consists of just five separate points.

Example 1

The function, f, is defined by $f(x) = x^2$ for $x \le 0$

and f(x) = x for x > 0.

- **a** Find f(4) and f(-4).
- **b** Sketch the graph of f(x).
- **c** Give the range of f.

Duestion

a For x > 0, f(x) = x, therefore f(4) = 4. For $x \le 0$, $f(x) = x^2$, therefore $f(-4) = (-4)^2 = 16$.

(continued)

b To sketch the graph of a function, use what you know about lines and curves in the *xy*-plane.

So f(x) = x for x > 0 is the part of the line y = x which corresponds to positive values of x, and $f(x) = x^2$ for $x \le 0$ is the part of the parabola $y = x^2$ that corresponds to negative values of x.

c The range of f is $f(x) \ge 0$.

Exercise 1

Find the range of f in each of the following cases.

- **a** f(x) = 2x 3 for $x \ge 0$
- **b** $f(x) = x^2 5$ for $x \le 0$
- **c** f(x) = 1 x for $x \le 1$
- **d** $f(x) = \frac{1}{r}$ for $x \ge 2$

2 Sketch the graph of each function given in question 1.

3 The function f is such that f(x) = -x for x < 0

and f(x) = x for $x \ge 0$.

- **a** Find the value of f(5), f(-4), f(-2) and f(0).
- **b** Sketch the graph of the function.

4 The function f is such that f(x) = x for $0 \le x \le 5$

and f(x) = 5 for x > 5.

- **a** Find the value of f(0), f(2), f(4), f(5) and f(7).
- **b** Sketch the graph of the function.
- c Give the range of the function.

1.2 Composite functions

Look at the two functions f and g given by $f(x) = x^2$ and $g(x) = \frac{1}{x}$ for $x \neq 0$. When g(x) replaces x in f(x) this gives the **composite function**

$$f[g(x)] = f\left(\frac{1}{x}\right) = \frac{1}{x^2} \text{ for } x \neq 0$$

A composite function formed this way is also called a **function of a function** and it is denoted by fg.

For example, if $f(x) = 3^x$ and g(x) = 1 - x then gf(x) means the function g of f(x).

$$\Rightarrow \qquad \operatorname{gf}(x) = \operatorname{g}(3^x) = 1 - 3^x$$

Also $fg(x) = f(1-x) = 3^{(1-x)}$

This example shows that gf(x) is *not* always the same as fg(x).

Exercise 2

1 The functions f, g and h are defined by $f(x) = x^2$, $g(x) = \frac{1}{x}$ for $x \neq 0$ and h(x) = 1 - x. Find **a** fg(x)**b** fh(x)c hg(x)**d** hf(x)e gf(x)2 When f(x) = 2x - 1 and $g(x) = x^3$ find the value of **a** gf(3) **b** fg(2) c fg(0)d gf(0)**3** Given that f(x) = 2x, g(x) = 1 + x and $h(x) = x^2$, find **a** hg(x)**b** gh(x)c gf(x)4 When $f(x) = \sin x$ and g(x) = 3x - 4 find **a** fg(x)**b** gf(x)

1.3 Inverse functions

Look at the function f where f(x) = 2x for x = 2, 3, 4.

The domain of f is {2, 3, 4} and the range of f is {4, 6, 8}. The relationship between the domain and range is shown in the arrow diagram.

It is possible to reverse this process, so that each member of the range can be mapped back to the corresponding member of the domain by halving each member of the range.

This process can be expressed algebraically.

When x = 4, 6, 8, then $x \to \frac{1}{2}x$ maps 4 to 2, 6 to 3 and 8 to 4.

This reverse mapping is a function in its own right and it is called the **inverse** function of f where f(x) = 2x.

Denoting this inverse function by f^{-1} we can write $f^{-1}(x) = \frac{1}{2}x$ for x = 4, 6, 8. The function f(x) = 2x for $x \in \mathbb{R}$ also has an inverse function, given by $f^{-1}(x) = \frac{1}{2}x$ which also has domain $x \in \mathbb{R}$.

If a function g exists that maps the range of f back to its domain, then g is called the inverse of f and it is denoted by f⁻¹.

The graph of a function and its inverse

Consider the curve g(x) that is obtained by reflecting y = f(x) in the line y = x (see graph).

A point A(*a*, *b*) on the curve y = f(x) is reflected onto a point A' on the curve y = g(x), whose coordinates are (*b*, *a*). Hence, interchanging the *x*- and *y*-coordinates of A gives the coordinates of A'.

The equation of y = g(x) is found by interchanging x and y in the equation y = f(x).

The coordinates of A on y = f(x) are [a, f(a)]. Therefore the coordinates of A' on y = g(x) are [f(a), a]. So the range of y = f(x) becomes the domain of y = g(x).

When the equation of the reflected curve is y = g(x)then g is the inverse of f, so $g = f^{-1}$.

Any curve whose equation can be written in the form y = f(x) can be reflected in the line y = x. However this reflected curve may not have an equation that can be written in the form $y = f^{-1}(x)$.

For example, look at the curve $y = x^2$ and its reflection in the line y = x (see graph).

The equation of the reflected curve is $x = y^2$, giving $y = \pm \sqrt{x}$ and $\pm \sqrt{x}$ is not a function.

Therefore the function f where $f(x) = x^2$ does not have an inverse. You can also see this from the diagram, because on the reflected curve, one value of *x* maps to two values of *y*. So in this case *y* cannot be written as a function of *x*.

Not every function has an inverse,

However, by changing the definition of f to $f(x) = x^2$ for $x \ge 0$, then the reflected curve is $y = \sqrt{x}$ for $x \ge 0$, and \sqrt{x} is a function for positive real numbers. You can see this in the graph. Therefore $f^{-1}(x) = \sqrt{x}$ for $x \ge 0$.

To summarise:

- The inverse of a function undoes the function, i.e. it maps the range of a function to its domain.
- ► The inverse of the function f is written f⁻¹.
- ► Not all functions have an inverse.
- ▶ When the curve whose equation is y = f(x) is reflected in the line y = x, the equation of the reflected curve is x = f(y).
- ► If this equation can be written in the form y = g(x) then g is the inverse of f, so $g(x) = f^{-1}(x)$, and the domain of g is the range of f.

y = g(x)

A'(b, a)

y = f(x)

A(a, b)

 $y = x^2$

Example 2

Determine whether there is an inverse of the function f given by $f(x) = 2 + \frac{1}{x}$, $x \neq 0$ If f^{-1} exists, express it as a function of *x* and give its domain.

The sketch of $f(x) = 2 + \frac{1}{x}$ shows that one value of f(x) maps to one value of x, therefore the reverse mapping is a function. Answei The equation of the reflection of $y = 2 + \frac{1}{x}$ can be written as $x = 2 + \frac{1}{y} \implies y = \frac{1}{x-2}$ Therefore when $f(x) = 2 + \frac{1}{x}$, $f^{-1}(x) = \frac{1}{x-2}$ for $x \in \mathbb{R}$, provided that $x \neq 2$. Example 3 The function f is given by f(x) = 5x - 1.

Find $f^{-1}(4)$. a

Solve the equation $f^{-1}(x) = x$. b

a Let y = f(x), that is y = 5x - 1. The equation of the reflected line is

$$x=5y-1 \implies y=\frac{1}{5}(x+1)$$

So
$$f^{-1}(x) = \frac{1}{5}(x+1)$$

Therefore
$$f^{-1}(4) = \frac{1}{5}(4+1) = 1$$

Answer

 $f^{-1}(x) = x \implies \frac{1}{5}(x+1) = x$

Therefore $x = \frac{1}{4}$.

Exercise 3

1 Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same axes.

x + 1 = 5x

- **a** f(x) = 3x 1 **b** $f(x) = (x 1)^3$

c
$$f(x) = 2 - x$$

$$\mathbf{d} \quad \mathbf{f}(x) = \frac{1}{x - 3}$$

$$\mathbf{e} \quad \mathbf{f}(x) = \frac{1}{x}$$

2 Determine whether f has an inverse function and, if it does, find it.

a
$$f(x) = x + 1$$

b
$$f(x) = x^2 + 1$$

c $f(x) = x^3 + 1$

Summary

- ► A function f where f(x) is any expression involving one variable which gives a single value of f(x) for each value of x.
- The set of values which the variable in a function can take is called the domain of the function.
- ► For each domain, there is a corresponding set of values of f(x). These are values which f(x) can take for values of x in that particular domain. This set is called the range of the function.
- The composite function fg means that g(x) replaces x in f(x).
- ► If a function g exists that maps the range of f back to its domain, then g is called the inverse of f and it is denoted by f⁻¹.
- ▶ When curve y = f(x) is reflected in the line y = x, the equation of the reflected curve is found by interchanging *x* and *y* in the equation y = f(x).
- ► When the equation of the reflected curve is y = g(x), g is called the inverse of f, so g = f⁻¹.
- ► The modulus of f(x) is written as | f(x) | and it equals the positive value of f(x), whether f(x) itself is positive or negative.
- A rational expression can be simplified by factorising the numerator and the denominator and then dividing both by any common factors.
- ► A proper fraction can be decomposed into partial fractions and the form of the partial fractions depends on the form of the factors in the denominator.
- A linear factor gives a partial fraction of the form $\frac{A}{A}$.
- A repeated factor gives two partial fractions of the form $\frac{A}{ax+b} + \frac{B}{(ax+b)^2}$
- When the fraction is improper it must first be expressed as the sum of a polynomial and a proper fraction, and can then be decomposed into partial fractions.

Review

- 1 The function f is defined by $f(x) = \sqrt{x-1}$ for x > 1.
 - **a** Find the range of **f**.
 - **b** Find the value of f(10).
- **2** The function f is defined by

$$f(x) = \sin x$$
 for $0 \le x < \pi$

$$f(x) = \pi - x \quad \text{for} \quad \pi \le x < 2\pi$$

- **a** Sketch the graph of f(x) for $0 \le x < 2\pi$.
- **b** Find the range of f.

3 The functions f and g are defined by $f(x) = \sin x$ and $g(x) = \sqrt{x}$ both for $x \ge 0$.

- **a** Find gf(x).
- **b** State a domain of gf(x) so that gf has real values.
- **4** Solve the equation |x+2| = 1 x.
 - **b** Show that there are no values of *x* for which |x| + 1 = x |x|.

5 Describe a sequence of transformations that maps the graph of $y = 2^x$ to the graph of $y = 3 + 2^{-x}$. 6 Simplify **b** $\frac{4x^2-25}{4x^2+20x+25}$ **a** $\frac{x^2-9}{2x-6}$ **7** Express $\frac{x-3}{x+6}$ as a number plus a proper fraction. 8 Express $\frac{3x^2-5x+1}{x+3}$ as a linear polynomial plus a proper fraction. 9 Express $\frac{x^3 - 4x^2 + 5}{x - 1}$ as a quadratic polynomial plus a proper fraction. **10** Express in partial fractions. **a** $\frac{4}{(2x+1)(x-3)}$ **b** $\frac{(3x-2)}{(x+1)(4x-3)}$ **c** $\frac{2t}{(t^2-1)}$ 11 Express in partial fractions. **b** $\frac{(2x-3)}{(x-2)(4x-3)}$ **c** $\frac{4x^2}{4x^2-9}$ **a** $\frac{x+4}{(x+3)(x-5)}$ **12** Express in partial fractions. **b** $\frac{3x-1}{r^2(x-3)}$ a $\frac{3x}{2x^2-2x-4}$ Assessment **1** The function f is defined by $f(x) = \sqrt{x-1}$ for $x \ge 1$. **a** Find $f^{-1}(x)$ and state its domain and range. **b** Solve the equation $f^{-1}(x) = 2x$. **2** a Express $\frac{x^2}{x^2-4}$ as a linear function plus a proper fraction. **b** Hence express $\frac{x^2}{x^2-4}$ in partial fractions. **3 a** Describe a sequence of two transformations that maps the graph of y = |x+1| to the graph of y = 1 - |1+x|. **b** Sketch the graph of y = 1 - |1 + x|. **c** Find the coordinates of the points of intersection of the graphs of y = |x+1| and y = 1 - |1+x|. **d** Hence find the possible values of *x* for which |x+1| > 1 - |1+x|. 4 Express each rational function in partial fractions. **a** $\frac{4}{x^2 - 7x - 8}$ **b** $\frac{2x-1}{(2x+1)(x-2)^2}$ **c** $\frac{3}{x(2x+1)}$ **5** a Sketch the graph of $f(x) = \cos x$ for the domain $0 \le x \le 2\pi$. **b** State the range of f. **c** Given that $g(x) = 1 - |\cos x|$, find fg(x). **d** Find the value of fg $\left(\frac{\pi}{2}\right)$.

Functions 21

6 The curve with equation $y = \frac{63}{4x-1}$ is sketched below for $1 \le x \le 16$. The function f is defined by $f(x) = \frac{63}{4x-1}$ for $1 \le x \le 16$. **a** Find the range of f. **b** The inverse of f is f^{-1} . i Find f^{-1} . 16 x 0 i **ii** Solve the equation $f^{-1}(x) = 1$. **c** The function g is defined by $g(x) = x^2$ for $-4 \le x \le -1$ **i** Write down an expression for fg(x). **ii** Solve the equation fg(x) = 1. AQA MPC3 January 2012 **7** Express $\frac{16x}{(1-3x)(1+x)^2}$ in the form $\frac{A}{1-3x} + \frac{B}{1+x} + \frac{C}{(1+x)^2}$ AQA MPC4 June 2014 (part question) **8** a Sketch the curve with equation y = 4 - |2x + 1|, indicating the coordinates where the curve crosses the axes. **b** Solve the equation x = 4 - |2x + 1|. **c** Solve the inequality x < 4 - |2x + 1|. d Describe a sequence of two geometrical transformations that maps the graph of y = |2x+1| onto the graph of y = 4 - |2x+1|. AQA MPC3 June 2015