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2 Loci, Graphs and Algebra

Loci, Graphs and Algebra

Introduction
Polynomial functions always form a continuous curve with no breaks. 

However, when you divide one polynomial by another, the graph of the 

new function can have breaks in it and is said to be discontinuous. An 

example of such graphs is a conic section, which is the curve formed when 

a plane intersects a right circular cone. Some of the curves you meet the 

most in the real world are examples of conic sections, such as the ellipse 

that describes Earth’s orbit around the Sun and the parabola that models 

the path of a football.

Recap
You will need to remember how to . . .

 ▶ Solve construction problems involving loci.

 ▶ Solve equations, including quadratics.

 ▶ Sketch basic graphs such as y = x2.

 ▶ Find the distance between two points in Cartesian coordinates.

 ▶ Solve simple inequalities such as 4x + 7 > 3(x − 4) and x2 − 7x + 10 ≥ 0.

 ▶ Transform graphs using stretches, reflections and translations.

1.1 Loci 
In the context of graphs, a locus (plural loci) is a set of points that follow a given 

rule. Therefore, a locus can be represented by an equation. 

For example, a locus is given as the points that are a distance of four units from 

the point (2, 3). This locus forms a circle with centre (2, 3). You know from 

previous studies that the equation of a circle is given in the form  

(x − a)2 + (y − b)2 = r2, where r is the radius of the circle with centre (a, b). 

Therefore, the locus described above can be given as the Cartesian equation
( 2) ( 3) 162 2− + − =x y . 

To find the Cartesian equation of a given locus, consider a general point on the 

curve (x, y) and use what you know about loci to help you formulate an 

appropriate equation.

Example 1

Find the Cartesian equation of the locus of points that are equidistant from the 

point (−1, 4) and the line 2=x .

Objectives
By the end of this chapter, 

you should know how to:

 ▶ Sketch graphs of 

rational functions. 

 ▶ Find equations of 

asymptotes to graphs.

 ▶ Solve inequalities 

involving rational 

functions.

 ▶ Describe and sketch 

various conic sections.

 ▶ Find the points of 

intersection between 

conic sections and 

coordinate axes and 

various straight lines.

 ▶ Find the Cartesian 

equation of simple 

loci that are described 

verbally.

Qu
es
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( ,  )x y  is a general point that obeys the rule. 

Distance of (x, y) from line 2=x  is 2−x .

Distance from ( ,  )x y  to ( 1, 4)−  is 

( 1) ( 4)2 2+ + −x y  

( 1) ( 4) ( 2)2 2 2+ + − = −x y x   

x2 + 2x + 1 + y2 − 8y + 16 = x2 − 4x + 4

Equation of the locus is ( 4) 6 32− = − +y x .

Exercise 1
1  Find the Cartesian equation of the locus of points which are equidistant 

from the point (3, −2) and the line y = 5.

2  Find the Cartesian equation of the locus of points which are a distance of 

four units from the point (2, −3).

3  Find the Cartesian equation of the locus of points which are equidistant 

from the point (−5, 3) and the line x = 2.

4  Find the Cartesian equation of the locus of points which are a distance of  

4 2  units from the point (4, −4).

1.2 Rational functions
During your A-level Mathematics studies you will have learned how to sketch 

curves. In this chapter, you will learn how to sketch curves for functions that are 

more complicated than trigonometric or polynomial ones. 

The graph of a rational function will always have a horizontal asymptote 

provided that the degree of x in the denominator is the same as or larger than 

the degree of x in the numerator. In this chapter, you will only deal with cases 

where there is a horizontal asymptote.

Sketching rational functions with a linear 
denominator
In order to sketch rational functions equations of the form = +

+
y ax b

cx d
, you need 

to start by finding the asymptotes.

You should remember that in the context of sketching a curve, an asymptote is 

a line that becomes a tangent to the curve as x or y tends to infinity.  

(Vertical asymptotes are the lines where the graph is undefined.)

For example, take the curve of 
4 8

3
=

−
+

y
x

x
. 

In order for y → ±∞, the denominator of this function must tend to zero. 

That is, as x + 3 → 0, x → −3. Hence, x = − 3 is an asymptote. 

To find the asymptote as x → ± ∞, you express the function as

=
−

+

4
8

1
3

y
x

x
As x → ±∞, x

3 0→  and x
8 0→ . 

Therefore, y
4

1
4→ = . 

An
sw

er

The asymptote occurs where 
the graph is undefined, so to 
find the vertical asymptote 
you need to equate the 
denominator of the rational 
function to zero.

Tip

Divide the top and bottom 
by x.

Tip

The two distances are equal.

Note

You will discover later in this 
chapter that this is a conic 
equation of a parabola.

Note
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4 Loci, Graphs and Algebra

Hence, 4=y  is also an asymptote.

Notice that as x → ±∞, the largest terms in the numerator and the denominator 

are 4x and x respectively, and so y ≈ 4x ÷ x = 4. 

x = −3 is a vertical asymptote, as it is parallel to the y-axis.

y = 4 is a horizontal asymptote, as it is parallel to the x-axis.

To be able to sketch y x

x
= −

+
4 8

3
, you also need to find where it crosses the x- and 

y-axes.

When x = 0:
8

3
= −y  When y = 0: 4x − 8 = 0 ⇒ x = 2

In summary, you proceed as follows:

1. Draw the asymptotes using dashed lines.

2.  Mark the points where the curve crosses the axes; as the numerator and the 

denominator of the function each contain only a linear term in x, the 

curve cannot cross either asymptote.

3.  Considering the curve for x  > −3, you can see that y tends to −∞ as x  
approaches −3 from values of x greater than −3. Hence, the curve 

tends to +∞ as x approaches −3 from values of x less than −3.

4.  You can now complete the curve of 
4 8

3
=

−
+

y
x

x
.

To sketch the curve of a rational function in the form == ++
++

y ax b
cx d

:

1.  Find the vertical asymptote by equating the 
denominator to zero; find the horizontal asymptote 
by dividing the numerator and denominator by x, 

that is, expressing the function as == ++

++

a b
x

c d
x

y  and then 

considering what happens when x tends to infinity. 

2.  Substitute x = 0 and y = 0 into the function to find 
where the curve crosses the axes.

3.  If necessary, consider the curve for the x-values, to 
see what happens to the y-values as x tends to ± ∞.

Example 2 

Sketch the graph of 
2 6

5
=

−
−

y
x

x

Horizontal asymptote:  

as x → ±∞, y → 2

1
, y = 2

Vertical asymptote:  

as y → ±∞, x − 5 → 0, x = 5

When x = 0:
6

5

6

5
=

−
−

=y  

20− 3

4

y

x

− 8
3

−3 0

4

y

x
2

− 8
3

Qu
es

tio
n

Next, find where the curve 
crosses the axes.

Note

An
sw

er

y

x

2

0 3 5

6
5

First, find the asymptotes.

Note

When the degrees of the 
numerator and denominator 
are the same, you can find 
the horizontal asymptote 
by dividing the leading 
coefficient of the numerator 
by the leading coefficient of 
the denominator.

Tip
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When y = 0: 2x − 6 = 0 ⇒ x = 3

Note that the asymptotes here are parallel to the coordinate axes.

Exercise 2
In questions 1, 2 and 3, state the equations of the asymptotes for the curve.

1  y = 1

2 6

−
+

x

x
2  y =

5

2+x

3  y = 2 7

3

+
−

x

x

4  Show that y = 2 is an asymptote for the curve y = 2 3

4

+
+

x

x
.

5  Show that y = −4 is an asymptote for the curve y =  
8 4

3

−
+

x

x
.

6  Sketch y = 
6 3

4

−
+

x

x
. 7  Sketch y = 

3 6

1

−
−

x

x
.

8  Sketch y = 
2 8

3 5

+
−

x

x
, stating the equations of the asymptotes of the curve.

Sketching rational functions with a quadratic 
denominator
When sketching rational functions with equations of the form = + +

+ +

2

2
y ax bx c

dx ex f
, 

where both the numerator and the denominator are quadratics, you proceed as 

before by finding the asymptotes, where the graphs cross the axes, and consider 

the shape of the curve. However, with these functions, the shape of the curve 

requires consideration of stationary points and the number of asymptotes 

depends on the number of roots of the quadratic denominator. 

 ▶ Two different roots will result in two vertical asymptotes.

 ▶ One repeated real root will result in one vertical asymptote.

 ▶ No roots indicates that there are no vertical asymptotes.

Regardless of the number of asymptotes, there may be values of y that are not 

realised by any value of x. Therefore, you need to find the range of the rational 

function in order to determine the set of possible values of y and in turn find the 

maximum and minimum points (the stationary points) of the curve.

Example 3

Find the range of possible values of y when y = 
3 4

3 42

−
+ −
x

x x
.

Cross-multiplying,

yx2 + 3yx − 4y = 3x − 4

⇒ yx2 + (3y − 3)x + 4 − 4y = 0

Therefore,

(3y − 3)2 − 4y(4 − 4y) ≥ 0 

Now copy and complete 
the sketch of = −

−
y x

x

2 6

5
 by 

also considering what will 
happen to the y-values as the 
x-values change.

Note

Qu
es

tio
n

An
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er

(continued)

To find the range of values of y, 
you need to find the values for 

which y = −
+ −
x

x x

3 4

3 42
 has real 

solutions for x.

Note

For x to be real, we know that 
b 2 − 4ac ≥ 0.

Note
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16 Loci, Graphs and Algebra

In questions 5 to 7, sketch the curve and clearly mark the points where the 

curve crosses the coordinate axes.

5  
36 25

1
2 2

+ =
x y

6  ( 4)

25

( 3)

16
1

2 2−
+

−
=

x y

7  ( 2)

25

( 6)

16
1

2 2−
−

+
=

x y

8  A straight line through (1, 0) with gradient m intersects the hyperbola 

1
9 25

2 2

=−
x y  at point P. Show that the x-coordinate of point P satisfies the 

equation (25 − 9 2m ) 2x + 18 2m x − (9 225)2 +m = 0.

9  Write the asymptotes of 5 3 6( )( )− + =x y , and sketch the curve.

10  An ellipse has the equation 
4 25

1
2 2

+ =
x y .

a Sketch the ellipse.

b Given that the line = +y x k intersects the ellipse at two distinct points, 

show that 29 29− < <k .

c The ellipse is translated by the vector 






a
b

 to form another ellipse 

whose equation is 

 25 4 50 242 2+ + − =x y x y c

  Find the values of a, b and c.

Summary
 ▶ A locus is a set of points that obey a certain rule, and a locus can be 

expressed graphically, verbally or in the form of an equation.

 ▶ Asymptotes show the ‘end behaviour’ of a graph as x or → ±∞y .

 ▶ To sketch the graphs of rational, parabola, ellipse and hyperbola equations 

you might need to find the:

• Asymptotes (if applicable; parabolas and ellipses do not have 

asymptotes)

• Intercepts with the axes, if any

• Coordinates of any maxima or minima (if applicable).

 ▶ You can solve a rational inequality by:

• Using algebra to multiply both sides of the inequality by (cx + d)2

• Sketching = +
+

y ax b

cx d
, then solving =+

+
kax b

cx d
 and comparing the two 

results to find the solution.

 ▶ Conic sections are a family of curves with standard equations, and include the:

• Parabola, y2 = 4ax

• Ellipse, 
x

a

y

b
1

2

2

2

2
+ =

• Hyperbola, x

a

y

b
1

2

2

2

2
− =

• Rectangular hyperbola, 2=xy c .
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 ▶ The transformations of more complicated curves follow the same rules 

linear transformations do.

 If y = f(x), then

• y = f(x) + a results in a positive translation in the y-direction

• y = f(x) − a results in a negative translation in the y-direction

• y = f(x + a) results in a negative translation in the x-direction

• y = f(x − a) results in a positive translation in the x-direction

• y = af(x) results in a stretch parallel to the y-axis, with scale factor a
• y = f(ax) is a stretch parallel to the x-axis, with scale factor 1

a
 

• y = −f(x) is a reflection in the y-axis

• y = f(−x) is a reflection in the x-axis.

Review exercises 
1  Find the Cartesian equation of the locus of points which are equidistant 

from the point (5, −1) and the y-axis.

2  Sketch the graph of
2 3 5

2

2

2
=

+ −
− −

y
x x

x x
.

3  Sketch the graph of
3 4 4

2 3

2

2
=

+ +
− −

y
x x

x x
.

4  Solve
2 1

3
3

−
+

>
x

x
.

5  Solve 2

3 2
1

2

2

− −
+ +

>
x x

x x
.

6  Sketch ( 3)

36

( 2)

25
1

2 2−
−

+
=

x y .

7  The curve 2x +
9

2y = 1 is translated by k units in the positive y-direction.

a Show that the equation of the curve after this translation is 
2x + y k( )

9

2− = 1. 

b Show that if the line x + y = 3 intersects the translated curve, the  

y-coordinate of the points of intersection satisfies the equation  

10 2y − (54 + 2k) y + 2k + 72 = 0.

Practice examination questions
1  a i  Write down the equations of the two asymptotes of the curve 

y
x

1

3
=

−
.  (2 marks)

 ii  Sketch the curve 1

3
=

−
y

x
, showing the coordinates of any points of 

intersection with the coordinate axes. (2 marks)

 iii  On the same axes, again showing the coordinates of any  

points of intersection with the coordinate axes, sketch the  

line 2 5= −y x . (1 mark)

b  i Solve the equation
1

3
2 5

−
= −

x
x . (3 marks)

 ii  Find the solution of the inequality
1

3
2 5

−
< −

x
x . (2 marks)

AQA MFP1 June 2010
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18 Loci, Graphs and Algebra

2  A parabola P has equation 22 = −y x .

a i   Sketch the parabola P. (2 marks)

 ii  On your sketch, draw two tangents to P which pass through  

the point ( 2, 0)− .  (2 marks)

b i  Show that, if the line ( 2)= +y m x intersects P, then the 

x-coordinates of the points of intersection must satisfy 
(4 1) (4 ) 02 2 2 2+ − + + =m x m x m 2 . (3 marks)

 ii  Show that, if this equation has equal roots, then16 12 =m .  (3 marks)

 iii  Hence find the coordinates of the points at which the tangents  

to P from the point −( 2, 0) touch the parabola P.  (3 marks)

AQA MFP1 June 2010

3  The diagram shows the hyperbola

 1
2

2

2

2
− =

x

a

y

b
 and its asymptotes.

 The constants a and b are positive integers.

 The point A on the hyperbola has coordinates (2,0).

 The equations of the asymptotes are 2=y x and 2= −y x.

a Show that 2=a  and 4=b .  (4 marks)

b The point P has coordinates (1, 0). A straight line passes through P and 

has gradient m. Show that, if this line intersects the hyperbola, the 

x-coordinates of the points of intersection satisfy the equation

 ( 4) 2 ( 16) 02 2 2 2− − + + =m x m x m  (4 marks)

c Show that this equation has equal roots if 3 162 =m .  (3 marks)

d There are two tangents to the hyperbola which pass through P.  

Find the coordinates of the points at which these tangents  

touch the hyperbola.

 (No credit will be given for solutions based on differentiation.)  (5 marks) 

AQA MFP1 January 2010

4  A curve has equation 

 2 1

2 3

2

2
=

− +
− −

y
x x

x x
a Find the equations of the three asymptotes to the curve.  (3 marks)

b i Show that if the line =y k intersects the curve, then

  k x k x k− − − − + =( 1) 2( 1) (3 1) 02  (1 mark)

 ii  Given that the equation k x k x k− − − − + =( 1) 2( 1) (3 1) 02  has real 

roots, show that 0 2 − ≥k k . (3 marks)

x

P A(2, 0)

y
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 iii  Hence show that the curve has only one stationary point  

and find its coordinates. (No credit will be given for solutions based 

on differentiation.)   (4 marks)

c Sketch the curve and its asymptotes.   (3 marks)

AQA MFP1 June 2013

5  An ellipse is shown on the right.

The ellipse intersects the x-axis at the points A and B. The equation  

of the ellipse is 
( 4)

4
1.

2
2−

+ =
x

y

a Find the coordinates of A and B.  (2 marks)

b The line  ( 0)= >y mx m  is a tangent to the ellipse, with point of contact 

P.

 i Show that the x-coordinate of P satisfies the equation

 (1 4 ) 8 12 02 2+ − + =m x x  (3 marks)

 ii Hence find the exact value of m.  (4 marks)

 iii Find the coordinates of P.  (4 marks)

AQA MFP1 January 2013

6  The curve C has equation y
x

x x
=

+ −( 1)( 2)
.

The line L has equation
1

2
= −y .

a Write down the equations of the asymptotes of C.  (3 marks)

b The line L intercepts C at two points. Find the x-coordinates of these two 

points.  (2 marks)

c Sketch C and L on the same axes.  

(You are given that the curve C has no stationary points).   (3 marks)

d Solve the inequality 
( 1)( 2)

1

2+ −
≤ −

x

x x
. (3 marks) 

AQA MFP1 June 2012

P

A
O B x

y
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