Published for OXFORD INTERNATIONAL AQA EXAMINATIONS

International A Level FURTHER MATHEMATICS with Mechanics

Brian Gaulter Mark Gaulter Brian Jefferson John Rayneau

OXFORD

Contents

AS Pure

1 Loci, Graphs and Algebra

1.1	Loci	2
1.2	Rational functions	3
1.3	Conic sections	11
Sum	imary 1	16
Revi	ew exercises 1	17
Practice examination questions 17		17

2 Complex Numbers

2.1	What is a complex number?	20
2.2	Calculating with complex numbers	22
2.3	Argand diagram	25
2.4	Loci in the complex plane	28
Sum	mary	31
Revi	ew exercises	32
Prac	tice examination questions	33

3 Roots and Coefficients of a Quadratic Equation

	-	
3.1	Roots of a quadratic equation	34
3.2	Finding an equation with roots that are	
	a function of existing roots	36
Sum	imary	39
Revi	ew exercises	39
Prac	ctice examination questions	40

4 Series

4.1 Summation formulae	42
4.2 Method of differences	45
Summary	
Review exercises	47
Practice examination questions	

5 Trigonometry

General solutions of	
trigonometric equations	49
Solving equations involving more	
complicated terms	53
mary	55
ew exercises	56
tice examination questions	56
	trigonometric equations Solving equations involving more complicated terms mary ew exercises

6 Calculus

6.1	Gradient of a tangent to a curve	58
6.2	Rates of change	60

6.3 In	mproper integrals	63
	ary	
	v exercises	
Practic	ce examination questions	66

7 Matrices and Transformations

7.1	Introduction to matrices	68
7.2	Transformations	72
7.3	Common transformations	76
7.4	Invariant points and lines	78
Sum	mary	80
Revie	ew exercises	81
Prace	tice examination questions	82

8 Linear graphs

8.1 Relationship between data	84
8.2 When the power of <i>x</i> is unknown, or when	
x is in the exponent	87
Summary	90
Review exercises	91
Practice examination questions	92

9 Numerical Methods

9.1	Solutions of polynomial equations	
9.2	Step-by-step solution of differential	
	equations	
Sum	mary	101
Revi	ew exercises	102
Prac	tice examination questions	

AS Statistics

10 Bayes' Theorem

10.1 Tree diagrams	104
10.2 Bayes' Theorem	109
Summary	112
Review exercises	112
Practice examination questions	113

11 Discrete Uniform and Geometric Distributions

11.1 Discrete uniform distribution	116
11.2 Geometric distribution	121
Summary	125
Review exercises	126
Practice examination questions	127

12 Probability Generating Functions A2 Pure

12.1 Probability generating functions and their	
properties13	31
12.2 Some standard distributions 13	35
12.3 Sums of independent random	
variables 13	39
Summary 14	14
Review exercises14	14
Practice examination questions 14	45

13 Linear Combinations of Discrete Random Variables

13.1 Linear combinations of discrete	
random variables	148
13.2 Independent discrete random	
variables	153
Summary	155
Review exercises	155
Practice examination questions	156

AS Mechanics

14 Constant Velocity in Two **Dimensions**

14.1 Vectors in component form	158
14.2 Position, displacement, distance, velocity	
and speed	159
14.3 Resultant velocity	
14.4 Relative velocity, closest approach	
and interception	165
Summary	
Review exercises	171
Practice examination questions	171

15 Dimensional Analysis

15.1 Dimensions and dimensional	
consistency	174
15.2 Finding a formula	177
Summary	179
Review exercises	180
Practice examination questions	181

16 Collision in One Dimension

16.1 Impulse and momentum	182
16.2 The principle of conservation of linear	
momentum	186
16.3 Elastic impact	188
16.4 Multiple collisions	193
Summary	195
Review exercises	196
Practice examination questions	196

17 Roots and Polynomials

17.1 Roots of higher-order equations	198
17.2 Complex roots of a polynomial	
equation	201
Summary	204
Review exercises	205
Practice examination questions	206

18 Proof by Induction and Finite Series

18.1 Proof by induction	208	
18.2 Finite series	215)
Summary	217	,
Review exercises	217	/
Practice examination quest	ions	,

19 Series and Limits

19.1 Convergence	220
19.2 Maclaurin's theorem	221
19.3 Finding the limits of a series	227
19.4 Improper integrals	228
Summary	230
Review exercises	231
Practice examination questions	231

20 De Moivre's Theorem

20.1	De Moivre's theorem	234
20.2	Further applications of de Moivre's	
1	theorem to complex numbers	239
20.3	Trigonometric identities	245
Sumn	nary	252
Revie	w exercises	253
Practi	ce examination questions	253

21 Polar Coordinates

21.1 Position of a point	256
21.2 Sketching curves given in polar	
coordinates	. 259
21.3 Area of a sector of a curve	. 262
Summary	266
Review exercises	. 267
Practice examination questions	

22 The Calculus of Inverse **Trigonometric Functions**

22.1	Inverse trigonometric functions	270
22.2	Differentiation and integration of inverse	
	trigonometric functions	273
Sum	mary	279
Revie	ew exercises	280
Pract	tice examination questions	281

23 Arc Length and Area of Surface of Revolution

23.1 Arc length	282
23.2 Area of a surface of revolution	285
Summary	286
Review exercises	287
Practice examination questions	287

24 Hyperbolic Functions

24.1 Hyperbolic functions	288
24.2 Differentiation of hyperbolic functions	292
24.3 Inverse hyperbolic functions	294
Summary	303
Review exercises	304
Practice examination questions	305

25 Differential Equations of First and Second Order

25.1 First-order linear equations	. 306
25.2 Second-order differential equations	. 308
25.3 Using a complementary function and	
particular integral to solve a first	
order equation	. 318
Summary	. 318
Review exercises	. 319
Practice examination questions	. 319

26 Vectors and Three-Dimensional Coordinate Geometry

26.1 Vectors 320
26.2 Vector product 324
26.3 Applications of vectors to
coordinate geometry 329
26.4 Equation of a line 329
26.5 Equation of a plane 329
26.6 Scalar triple product and its applications 338
Summary 342
Review exercises 344
Practice examination questions 344

27 Solutions of Linear Equations

27.1 Simultaneous linear equations	346
27.2 Using determinants to find the number of	
solutions of three simultaneous equations	349
Summary	351
Review exercises	352
Practice examination questions	352

28 Matrix Algebra

28.1 Inverse matrices	354
28.2 Transformations	356
28.3 Invariant points and lines	361

Summary	367
Review exercises	368
Practice examination questions	368

A2 Mechanics

29 Vertical Circular Motion

29.1 Circular motion with non-	uniform speed	370
29.2 Leaving the circular path .		375
Summary		378
Review exercises		378
Practice examination questions		379

30 Collisions in Two Dimensions

30.1 Impulse and momentum in	
two dimensions	382
30.2 Elastic impact	385
Summary	389
Review exercises	389
Practice examination questions	390

31 Projectiles Launched onto Inclined Planes

31.1 Inclined plane	393
31.2 Other problems	
Summary	
Review exercises	401
Practice examination questions	401

32 Elastic Strings and Springs

32.1 Elastic strings and springs	404
32.2 Work and energy	408
Summary	414
Review exercises	414
Practice examination questions	415

33 Application of Differential Equations

33.1 Variable forces	418
Summary	424
Review exercises	424
Practice examination questions	425

34 Simple Harmonic Motion

34.1 Oscillation	426
34.2 Solving the SHM equation of motion	429
34.3 Simple pendulum	433
Summary	435
Review exercises	435
Practice examination questions	436
Answers	438
Index	473

Loci, Graphs and Algebra

Introduction

Polynomial functions always form a continuous curve with no breaks. However, when you divide one polynomial by another, the graph of the new function can have breaks in it and is said to be **discontinuous**. An example of such graphs is a **conic section**, which is the curve formed when a plane intersects a right circular cone. Some of the curves you meet the most in the real world are examples of conic sections, such as the ellipse that describes Earth's orbit around the Sun and the parabola that models the path of a football.

Recap

You will need to remember how to ...

- ► Solve construction problems involving loci.
- ► Solve equations, including quadratics.
- Sketch basic graphs such as $y = x^2$.
- ► Find the distance between two points in Cartesian coordinates.
- ► Solve simple inequalities such as 4x + 7 > 3(x 4) and $x^2 7x + 10 \ge 0$.
- ► Transform graphs using stretches, reflections and translations.

1.1 Loci

In the context of graphs, a **locus** (plural **loci**) is a set of points that follow a given rule. Therefore, a locus can be represented by an equation.

For example, a locus is given as the points that are a distance of four units from the point (2, 3). This locus forms a circle with centre (2, 3). You know from previous studies that the equation of a circle is given in the form $(x-a)^2 + (y-b)^2 = r^2$, where *r* is the radius of the circle with centre (*a*, *b*). Therefore, the locus described above can be given as the Cartesian equation $(x-2)^2 + (y-3)^2 = 16$.

To find the Cartesian equation of a given locus, consider a general point on the curve (x, y) and use what you know about loci to help you formulate an appropriate equation.

Example 1

Find the Cartesian equation of the locus of points that are equidistant from the point (-1, 4) and the line x = 2.

Objectives

By the end of this chapter, you should know how to:

- Sketch graphs of rational functions.
- Find equations of asymptotes to graphs.
 Solve inequalities
 - involving rational functions.

Describe and sketch various conic sections.

- Find the points of intersection between conic sections and coordinate axes and various straight lines.
- Find the Cartesian equation of simple loci that are described verbally.

(x, y) is a general point that obeys the rule.

Distance of (x, y) from line x = 2 is |x - 2|.

Distance from (x, y) to (-1, 4) is

 $\sqrt{(x+1)^2 + (y-4)^2}$ $(x+1)^2 + (y-4)^2 = (x-2)^2$ $x^2 + 2x + 1 + y^2 - 8y + 16 = x^2 - 4x + 4$ Equation of the locus is $(y-4)^2 = -6x + 3$.

Exercise 1

- Find the Cartesian equation of the locus of points which are equidistant from the point (3, -2) and the line y = 5.
- Find the Cartesian equation of the locus of points which are a distance of four units from the point (2, -3).
- Find the Cartesian equation of the locus of points which are equidistant from the point (-5, 3) and the line x = 2.
- Find the Cartesian equation of the locus of points which are a distance of 4√2 units from the point (4, −4).

1.2 Rational functions

During your A-level Mathematics studies you will have learned how to sketch curves. In this chapter, you will learn how to sketch curves for functions that are more complicated than trigonometric or polynomial ones.

The graph of a rational function will always have a horizontal asymptote provided that the degree of *x* in the denominator is the same as or larger than the degree of *x* in the numerator. In this chapter, you will only deal with cases where there is a horizontal asymptote.

Sketching rational functions with a linear denominator

In order to sketch rational functions equations of the form $y = \frac{ax+b}{cx+d}$, you need to start by finding the asymptotes.

You should remember that in the context of sketching a curve, an **asymptote** is a line that becomes a tangent to the curve as *x* or *y* tends to infinity. (Vertical asymptotes are the lines where the graph is undefined.)

For example, take the curve of $y = \frac{4x - 8}{x + 3}$.

In order for $y \rightarrow \pm \infty$, the denominator of this function must tend to zero.

That is, as $x + 3 \rightarrow 0$, $x \rightarrow -3$. Hence, x = -3 is an asymptote.

To find the asymptote as $x \rightarrow \pm \infty$, you express the function as

$$y = \frac{4 - \frac{6}{x}}{1 + \frac{3}{x}}$$

As $x \to \pm \infty$, $\frac{3}{x} \to 0$ and $\frac{8}{x} \to 0$.
Therefore, $y \to \frac{4}{1} = 4$.

Note

The two distances are equal.

Note

You will discover later in this chapter that this is a **conic equation** of a parabola.

Tip

The asymptote occurs where the graph is undefined, so to find the vertical asymptote you need to equate the denominator of the rational function to zero.

Tip

Divide the top and bottom by *x*.

Hence, y = 4 is also an asymptote.

Notice that as $x \to \pm \infty$, the largest terms in the numerator and the denominator are 4x and x respectively, and so $y \approx 4x \div x = 4$.

x = -3 is a **vertical asymptote**, as it is parallel to the *y*-axis.

y = 4 is a **horizontal asymptote**, as it is parallel to the *x*-axis.

To be able to sketch $y = \frac{4x-8}{x+3}$, you also need to find where it crosses the *x*- and *y*-axes.

When x = 0: $y = -\frac{8}{3}$ When y = 0: $4x - 8 = 0 \implies x = 2$ In summary, you proceed as follows:

- **1.** Draw the asymptotes using dashed lines.
- **2.** Mark the points where the curve crosses the axes; as the numerator and the denominator of the function each contain only a linear term in *x*, the curve cannot cross either asymptote.
- **3.** Considering the curve for x > -3, you can see that *y* tends to $-\infty$ as *x* approaches -3 from values of *x* greater than -3. Hence, the curve tends to $+\infty$ as *x* approaches -3 from values of *x* less than -3.
- 4. You can now complete the curve of $y = \frac{4x-8}{x+3}$.

To sketch the curve of a rational function in the form $y = \frac{4}{3}$

- 1. Find the vertical asymptote by equating the denominator to zero; find the horizontal asymptote by dividing the numerator and denominator by *x*, that is, expressing the function as $y = \frac{a + \frac{b}{x}}{c + \frac{d}{x}}$ and then considering what happens when *x* tends to infinity.
- 2. Substitute x = 0 and y = 0 into the function to find where the curve crosses the axes.
- 3. If necessary, consider the curve for the *x*-values, to see what happens to the *y*-values as *x* tends to $\pm \infty$.

Example 2

Sketch the graph of $y = \frac{2x-6}{x-5}$ Horizontal asymptote: as $x \to \pm \infty$, $y \to \frac{2}{1}$, y = 2Vertical asymptote: as $y \to \pm \infty$, $x-5 \to 0$, x = 5When x = 0: $y = \frac{-6}{-5} = \frac{6}{5}$

Tip

When the degrees of the numerator and denominator are the same, you can find the horizontal asymptote by dividing the leading coefficient of the numerator by the leading coefficient of the denominator.

n

2

 \hat{x}

x

-3

First, find the asymptotes.

Note

x

Next, find where the curve crosses the axes.

When $y = 0: 2x - 6 = 0 \implies x = 3$

Note that the asymptotes here are parallel to the coordinate axes.

Exercise 2

In questions 1, 2 and 3, state the equations of the asymptotes for the curve.

- 2 $y = \frac{5}{x+2}$ 1 $y = \frac{x-1}{2x+6}$ **3** $y = \frac{2x+7}{x-3}$ 4 Show that y = 2 is an asymptote for the curve $y = \frac{2x+3}{x+4}$. Show that y = -4 is an asymptote for the curve $y = \frac{8-4x}{x+2}$.
- 6 Sketch $y = \frac{6x-3}{x+4}$. **7** Sketch $y = \frac{3x-6}{x-1}$. 8 Sketch $y = \frac{2x+8}{3x-5}$, stating the equations of the asymptotes of the curve.

Sketching rational functions with a quadratic denominator

When sketching rational functions with equations of the form $y = \frac{ax^2 + bx + c}{dx^2 + ex + f}$ where both the numerator and the denominator are quadratics, you proceed as before by finding the asymptotes, where the graphs cross the axes, and consider the shape of the curve. However, with these functions, the shape of the curve requires consideration of stationary points and the number of asymptotes depends on the number of roots of the quadratic denominator.

- Two different roots will result in two vertical asymptotes.
- One repeated real root will result in one vertical asymptote.
- No roots indicates that there are no vertical asymptotes.

Regardless of the number of asymptotes, there may be values of y that are not realised by any value of x. Therefore, you need to find the **range** of the rational function in order to determine the set of possible values of y and in turn find the maximum and minimum points (the stationary points) of the curve.

Example 3

Find the range of possible values of y when $y = \frac{3x - 4}{x^2 + 3x - 4}$.

Cross-multiplying,

```
yx^{2} + 3yx - 4y = 3x - 4

\Rightarrow yx^{2} + (3y - 3)x + 4 - 4y = 0
```

Therefore

 $(3y-3)^2 - 4y(4-4y) \ge 0$

Note

To find the range of values of γ , you need to find the values for which $y = \frac{3x-4}{x^2+3x-4}$ has real solutions for x.

Note

For x to be real, we know that $b^2 - 4ac \ge 0$.

(continued)

Note

Now copy and complete the sketch of $y = \frac{2x - 6}{x - 5}$ by also considering what will happen to the *v*-values as the x-values change.

5

In questions **5** to **7**, sketch the curve and clearly mark the points where the curve crosses the coordinate axes.

5
$$\frac{x^2}{36} + \frac{y^2}{25} = 1$$

6 $\frac{(x-4)^2}{25} + \frac{(y-3)^2}{16} = 1$
7 $\frac{(x-2)^2}{25} - \frac{(y+6)^2}{16} = 1$

8 A straight line through (1, 0) with gradient *m* intersects the hyperbola $\frac{x^2}{9} - \frac{y^2}{25} = 1 \text{ at point } P. \text{ Show that the } x\text{-coordinate of point } P \text{ satisfies the equation } (25 - 9m^2)x^2 + 18m^2x - (9m^2 + 225) = 0.$

- 9 Write the asymptotes of (x-5)(y+3) = 6, and sketch the curve.
- 10 An ellipse has the equation $\frac{x^2}{4} + \frac{y^2}{25} = 1$.
 - **a** Sketch the ellipse.
 - **b** Given that the line y = x + k intersects the ellipse at two distinct points, show that $-\sqrt{29} < k < \sqrt{29}$.
 - **c** The ellipse is translated by the vector $\begin{pmatrix} a \\ b \end{pmatrix}$ to form another ellipse whose equation is

$$25x^2 + 4y^2 + 50x - 24y = c$$

Find the values of *a*, *b* and *c*.

Summary

- ► A locus is a set of points that obey a certain rule, and a locus can be expressed graphically, verbally or in the form of an equation.
- Asymptotes show the 'end behaviour' of a graph as x or $y \to \pm \infty$.
- To sketch the graphs of rational, parabola, ellipse and hyperbola equations you might need to find the:
 - Asymptotes (if applicable; parabolas and ellipses do not have asymptotes)
 - Intercepts with the axes, if any
 - Coordinates of any maxima or minima (if applicable).
- ► You can solve a rational inequality by:
 - Using algebra to multiply both sides of the inequality by $(cx + d)^2$
 - Sketching $y = \frac{ax+b}{cx+d}$, then solving $\frac{ax+b}{cx+d} = k$ and comparing the two results to find the solution.
- ► Conic sections are a family of curves with standard equations, and include the:
 - Parabola, $y^2 = 4ax$
 - Ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
 - Hyperbola, $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
 - Rectangular hyperbola, $xy = c^2$.

► The transformations of more complicated curves follow the same rules linear transformations do.

If y = f(x), then

- y = f(x) + a results in a positive translation in the *y*-direction
- y = f(x) a results in a negative translation in the *y*-direction
- y = f(x + a) results in a negative translation in the *x*-direction
- y = f(x a) results in a positive translation in the *x*-direction
- y = af(x) results in a stretch parallel to the *y*-axis, with scale factor *a*
- y = f(ax) is a stretch parallel to the x-axis, with scale factor $\frac{1}{a}$
- y = -f(x) is a reflection in the *y*-axis
- y = f(-x) is a reflection in the *x*-axis.

Review exercises

- Find the Cartesian equation of the locus of points which are equidistant from the point (5, −1) and the *y*-axis.
- 2 Sketch the graph of $y = \frac{2x^2 + 3x 5}{x^2 x 2}$.
- 3 Sketch the graph of $y = \frac{3x^2 + 4x + 4}{x^2 2x 3}$

4 Solve
$$\frac{2x-1}{x+3} > 3$$
.

5 Solve
$$\frac{x^2 - x - 2}{x^2 + 3x + 2} > 1.$$

6 Sketch
$$\frac{(x-3)^2}{36} - \frac{(y+2)^2}{25} = 1.$$

7 The curve $x^2 + \frac{y^2}{9} = 1$ is translated by k units in the positive y-direction.

- **a** Show that the equation of the curve after this translation is $x^2 + \frac{(y-k)^2}{2} = 1.$
- **b** Show that if the line x + y = 3 intersects the translated curve, the *y*-coordinate of the points of intersection satisfies the equation $10y^2 (54 + 2k)y + k^2 + 72 = 0$.

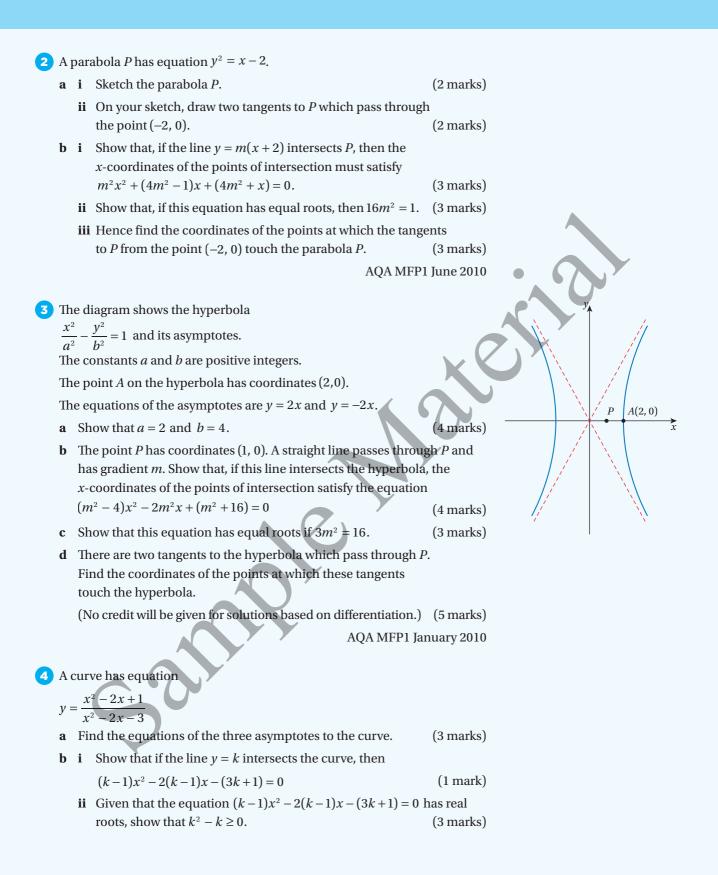
Practice examination questions

a i Write down the equations of the two asymptotes of the curve y = 1/(x-3). (2 marks)
 ii Sketch the curve y = 1/(x-3), showing the coordinates of any points of intersection with the coordinate axes. (2 marks)

- iii On the same axes, again showing the coordinates of any points of intersection with the coordinate axes, sketch the line y = 2x 5. (1 mark)
- **b** i Solve the equation $\frac{1}{x-3} = 2x-5$. (3 marks) ii Find the solution of the inequality $\frac{1}{x-3} < 2x-5$. (2 marks)

AQA MFP1 June 2010

17



18

iii Hence show that the curve has only one stationary point and find its coordinates. (No credit will be given for solutions based on differentiation.) (4 marks) c Sketch the curve and its asymptotes. (3 marks) AQA MFP1 June 2013 5 An ellipse is shown on the right. The ellipse intersects the *x*-axis at the points *A* and *B*. The equation of the ellipse is $\frac{(x-4)^2}{4} + y^2 = 1$. **a** Find the coordinates of *A* and *B*. (2 marks) **b** The line y = mx (m > 0) is a tangent to the ellipse, with point of contact Р. C \hat{x} i Show that the *x*-coordinate of *P* satisfies the equation $(1+4m^2)x^2-8x+12=0$ (3 marks) **ii** Hence find the exact value of *m*. (4 marks) iii Find the coordinates of P. (4 marks) AQA MFP1 January 2013 **6** The curve *C* has equation $y = \frac{x}{(x+1)(x-2)}$. The line *L* has equation $y = -\frac{1}{2}$. **a** Write down the equations of the asymptotes of *C*. (3 marks) **b** The line *L* intercepts *C* at two points. Find the *x*-coordinates of these two points. (2 marks) **c** Sketch *C* and *L* on the same axes. (You are given that the curve C has no stationary points). (3 marks) **d** Solve the inequality (3 marks) AQA MFP1 June 2012