Oxford Resources
for OxfordAQA

International AS & A-level

Computer B
Science o

Alison Page

OXFORD

O XFORD[INXIN

INTERNATIONAL QUALIFICATIONS

The international exam board that puts
fairness first

We're built on over 100 years of expertise. OxfordAQA is a partnership between
Oxford University Press, a department of the University of Oxford, and AQA, by far the
largest provider of GCSEs and A-levels.

With us, fairness comes first. Our student-focused approach only ever tests subject
ability, giving every student the best possible chance to show what they can do.

Our exams are benchmarked to UK standards. This means that international students
develop the same knowledge and skills as their UK counterparts.

We're here to support you every step of the way. Our global team and
comprehensive programme of teacher support means that we will work with you to
find the best solutions to the challenges you face.

Resources from Oxford University Press

Oxford University Press publishes the only dedicated textbooks for Oxford AQA
qualifications. Written by expert authors, our textbooks are matched exactly to the
specification to provide teachers and students with full support. Each book
includes plenty of practice questions for every Assessment Objective to prepare
students for success in their exams.

Digital editions of the latest textbooks are available on Kerboodle, which provides
both online and offline access to content.

JOL 7O 7O 7O 7O 7O 1O 1«
O C o< C o] C o C O] O C o

Contents

Introduction Unit 4: Advanced concepts and principles

of computer science

How to use this book

Chapter 13: Theory of computation
Unit 1: Programming
Chapter 14: Networking and cyber security
Chapter 1: Procedural programming

Chapter 15: Databases
Chapter 2: Fundamental data structures

Chapter 16: Artificial intelligence
Chapter 3: Program design

Chapter 4: Searching and sorting algorithms Exam skills

Glossary

Chapter 5: Representing data
Chapter 6: Computer systems

Chapter 7: Computer organisation and
architecture

Chapter 8: Machine code and assembly

language 132
8.01 Assembly language 132
8.02 Commands in assembly language 135
8.03 Control program flow 138
8.04 Understand and write programs 141
8.05 Bitwise operations 144
Chapter 8 Revision and exam practice 147

Unit 3: Advanced programming

Chapter 9: Object-oriented and additional
programming

Chapter 10: Advanced data structures

Chapter 11: Advanced algorithms

Chapter 12: Functional programming

Machine code and

assembly language

8.01 Assembly language

Controlling the computer with
instruction codes

You have learned about the fetch—execute cycle. The processor
fetches instruction codes from RAM and then executes them
(carries them out). A list of all the instruction codes that a computer
understands is called the instruction set of that computer.

Instruction codes are binary numbers. Each binary number tells the
computer to do a different action. Every type of processor has its
own ‘processor instruction set’' that works only for that processor.
The same binary number can mean different things in different

computers.

A Figure 8.1: A machine code instruction is decoded and executéd

Add 2
numbers

0110 1000

Instruction code Computer action

A program that is made up of binary instruction codes is called a
machine code file. All software files are made of machine code.
Programmers could write software by writing machine code. But
this is rare, because it is hard for a human programmer to.rmake

a program using number codes. Instead, programs are almost
always written in a programming language and then translated into
machine code.

Mnemonic letter codes

The first programming language to be invented was assembly
language. It is very similar to machine code. But instead of using
binary number codes, it uses'short words of three or four letters.
These words are easily converted into number codes.

The words used in assembly language are called mnemonic codes.
Mnemonic is pronounced nu-mon-ic’. It means ‘easy to remember’.
The mnemonic codes of assembly language exactly match the
binary number codes of the instruction set.

—>

Add 2
numbers

ADD

—>

0110 1000

Mnemonic code Instruction code Computer action

You will be able to:

° hat assembly

° format of an
anguage instruction

L] s to define an

A 4

Instruction set: the binary number
codes that stand for actions a
processor can execute

Processor instruction set: the
instruction set of a particular
processor.

ms

Machine code: a program made
of instruction codes that can be
understood by the processor
Assembly language: a
programming language that uses
mnemonic word codes instead of
binary instruction codes

Mnemonic: easy to remember

<« Figure 8.2: The mnemonic codes of
assembly language can be converted
directly into the binary numbers of
machine code

Machine code and assembly language

There are different versions of assembly language. Each one uses
slightly different mnemonic codes. Exam questions will use a Key terms

version called standard OxfordAQA assembly language.
Low-level language: a language

like assembly language or machine

Low-level |anguages code which controls the individual
registers and memory locations of

Machine code and assembly language are called low-level a computer

languages. These languages work directly with the registers and Operator: the part of a command

memory locations of the computer. The instructions you write are that tells'the computer what

very similar to the actual codes the processor uses. This gives you process to carry out

very good control over the detailed working of the computer. But it Opcode: the operator in an

can be hard to write programs in a low-level language. assembly language command

Operand: the part of an instruction

Building skills 1 that tells the computer what data
A to process
The assembly language used by OxfordAQA is based on the machine Destination register: a numbered

register used in an instruction,

code of an ARM processor. Do online research to find out what'an ARM
usually to store the result

processor is.
— 4

Operator and operands

In the examples above, the instruction told the computer to.add two
numbers. In a real program, we must also tell the computer what
numbers to add. Almost every instruction has two parts:

® An operator is an instruction telling the computer what process
to carry out. In assembly language this is shown using an
opcode.

® The operand(s)are the data that has to be processed.

The operands are fetched at the same time as the instruction during
the fetch—execute cycle.

Result of operation
Opérator; ADD é

é 9 11

Operands: 5, 6

A Figure 8.3: Each instruction consists of an operator and some operands

The operation creates a new data value, called the result. The
result has to be saved. The result is typically saved into a register.
A register is a small area of memory inside the processor. The
registers are numbered (for example, from 0 to 12). The register
where the result is saved is called the destination register.

Chapter 8

Addressing mode Key term
You have seen that most instructions include operands. That is the Addressing mode: different ways
data you want the computer to use in the operation. There are three of stating the operands in an
ways to tell the computer what data to use: assembly language instruction.
. _ . Immediate addressing means
e |Immediate addressing: The operand is the actual data you want providing the actual data. Direct
to use (like in the picture). addressing means giving the

e Direct addressing: The operand is a register or address where location where the data is stored

the data is stored.

e |ndirect addressing: The operand is a register, which holds
another address where the data is stored (so it takes two steps
to find the data).

These three ways of stating the operand are called addressing
modes.

Building skills 2

Do online research to find a web page that shows the list of mnemonic
codes in OxfordAQA assembly language. You will learn all of these
commands as you work through this unit.

Structure of an assembly language

To recap, a typical assembly language instruction will have these 1. Why is it easier to write a
parts: program in assembly language
than in machine code?

* opcode 2. What is the purpose of the

e destination register destination register?

e addressing mode 3. Describe the difference
between an operator and an

® operands. operand.

: : ; Explain the three modes of
Not all instructions have exactly this structure. Some commands do addressing used in assembly

not use operands or.a destination register. You will learn more in the language.
following lessons.

Machine code and assembly language

8.02 Commands in assembly
language
Loading and storing data

Each register holds only one data value. When a program runs, the
computer loads data from memory into the registers, makes some
changes to the data, and then stores data back into memory.

In OxfordAQA assembly language there are 13 registers. Registers
are numbered from RO to R12. Memory locations are numbers
without an R in front. In the exam, the question will tell you what
registers and memory locations to use.

LOAD command

The command to load gets data from a memory locationand puts it
into a register. The command has this structure:

e the opcode LDR
e the destination register, Rd (where the data.goes to)

e the memory location (where the data comes from).

You would write the command in this form. Notice the comma
between the two operands.

LDR Rd, location

Here is an example. To load data from memory location 99 into
register RO, you would give this command.

LDR RO, 99

Remember that when an operand identifies a place where the data
is held, this'is called direct addressing. That is the only type of
addressing the load command can use.

Some commands canalso use immediate addressing. There is
more information about this towards the end of this lesson.

STORE command

The command to store data has this structure. It stores data from
the destination register to a memory location.

STR Rd, location

Here is an example. This command stores the data from register R6
in memory location 23.

STR R6, 23

Once again, this is an example of direct addressing. That is the only
kind of addressing the store command can use.

You can load and store data to a numbered register instead of a
memory location. In this case, the second operand will start with an
R. That tells you that it is a register. This is also an example of direct
addressing.

You will be able to:

® |oad and save data using
assembly language
commands

® carry out simple calculations
using assembly language
instructions.

Kerem

Load: a value is copied from
computer memory to.the
destination register (using direct
addressing)

Chapter 8

MOVE data between registers

A different command moves data around between the registers.

Key terms

Store: a value is copied from the
MOV Rd, operand destination register to computer

Let's see the effect of this command. It can be helpful to draw sty (LT liess ek essig)

the registers you need to use, and the data that they hold. In this Move: a data value is copiediinto

example, R3 holds the data value 16. I diesilinailion reglsier (s T
immediate or direct addressing)

RO R1 R2 R3 R4
16

You may see a table like this ready-made in an exam question. Or
the question might tell you in words: ‘register 3 holds the data value
16" Here is an example command.

MOV RO, R3

The command moves data to RO from R3. The data is copied
across. After this command, the registers will look like this.

RO R1 R2 R3 R4
16 16

All these commands use direct addressing. The operands are
locations, and the commands move data between locations.
Remember that you will see an R in front of the operand if it.is
the number of a register. A number on'its own is the address of a
memory location.

Immediate addressing

Move operations can also use immediate addressing. That means
you give the exact datarvalue rather than.a numbered location

or register. A # symbol in front of the data value tells you it is
immediate addressing. Here is an example.

MOV R6, #590

This command means ‘put the data value 590 into register 6'.

Building skiIM

Write assembly language commands to carry out these operations:

e Move the number 23 into register 2.
e Move data to register O from register 2.

e Store data from register O to memory location 99.

Machine code and assembly language

Carrying out calculations

We can add and subtract data values using assembly language
instructions:

e ADD - add two operands and save the result in the destination
register.

e SUB - subtract one operand from another and save the result in
the destination register.

These commands have this structure. Remember that Rd means
the destination register — where the result is sent.

ADD Rd, operand 1, operand 2
SUB Rd, operand 1, operand 2

For example, this command adds the value in register 3 to the value
in register 4 and stores the result in register 0.

ADD RO, R4, R3

We can use immediate addressing for the second operand. For
example, this command subtracts the value 70 from the value'in

register 4. The result is put into register 6.

Write assembly language commands to carry out these operations:

SUB R6, R4, #70

Building skills 2

e Move the number 99 into R1.
e Add the number 23 to the value in R1 and put the result in RO.

e Store the value in RO to memory location 55.

Trace the registers

You have learned how to trace an algorithm written in pseudocode.
You can also trace a program written in assembly language. You
can trace the effect of each command on the registers. Some exam
questions may ask you.to do this. Here is a set of registers showing
the starting values.

RO R1 R2 R3 R4
7 8

Here is an assembly language command.

ADD R2, RO, R1

This means ‘add the values in RO and R1, put the result in R2". After
running the command, the registers look like this.

RO R1 R2 R3 R4
7 8 15

Key term

Trace (assembly language): write
down the values in the registers
and numbered memory locations
as you work through a program
step by step

Multiplication and division can be
carried out using a binary shift
operator (see section 8.05).

Test your understanding

The registers of a computer are
empty, as shown in this diagram.
Memory location 100 holds the
data value 6.

RO |R1 [R2 [R3 | R4

1. Show the contents of the
registers after this command
is carried out.

ILDR RO, 100

2. Show how the contents of the
registers change after this
additional command is carried
out.

MOV R1, #99

3. Show how the contents of the
registers change after this
additional command is carried
out

ADD R2, R1, RO

4. What value is stored in
data location 100 after this
command is carried out?

STR R2, 100

Chapter 8

8.03 Control program flow
The program counter

An assembly language program is a series of commands. As the
program runs, the program counter counts through the lines of the
program one by one. Each line is carried out and then the program
counter moves on to the next line.

You can control the program counter using assembly language
commands:

e You can stop the program counter with the HALT command.

e You can make the program counter jump to a different place in
the program. This is called branching.

This gives us control over the flow of the program.

Branching

You can jump to a different line of the program with a branch
command:

e Branch backwards: this can make the program go back-and
repeat some lines, like a loop in pseudocode.

e Branch forwards: this can make the program miss out some
lines, like a selection structure in pseudocode.

We put labels into the program to tell the program where to branch
to. The branch command will make the program jump to where the
label is.

For example, here is a program without branching:it-adds 1 to the
value in memory location 99.

MOV RO, #1

LDR R1, 99

ADD R24 R1, RO

STR R2, 99

HALT

Here is the same program with a branch backwards. The new lines
are highlighted.

MOV RO, #1
MYLABEL:

LDR R1, 99

ADD R2, R1, RO

STR R2, 99

B MYLABEL

HALT

You will be able to:
® use conditional branching

® make loops and if structures
using assembly language.

Keytoms

Branching: an assembly language
command that makes the program
jump to a new line

Label: an identifier used in the
branch command, showing where
to jump to

Machine code and assembly language

Now the program contains a label. In this example it is called
'MYLABEL. But you can choose any identifier that seems suitable. Key terms

When the program reaches the command Conditional branching: a branch

B MYLABEL command that depends on the

. , .)) result of a comparison between
it branches back to where ‘MYLABEL is. This program will add 1 to) vl

the value in location 99. Then it will loop back and do it again. Can

you see a problem with this program? There is no way to stop the

loop! It will keep adding forever and never halt.

Conditional branching

Most programs that include branching use conditional branching.
That means the branching is controlled by a logical comparison,
using a relational operator. The command CMP tells the computerto
compare two values. For example:

CMP R2, #15
This compares the value in R2 to the number 15. The result of the
comparison is used in the next branch command. For example, BLT
means ‘branch if less than”:

BLT MYLABEL
Here is the program showing this change.

MOV RO, #1
MYLABEL:

LDR R1, 99

ADD R2, R1, RO

STR R2, 99

CMP R2, #15

BLT MYLABEL

HALT

This branch«command will happen.if the value in R2 is less than 15.
If R2 is not less than 15, the branch command will not happen. The
program will halt.

The next:table shows all the conditional branch commands that you

can use.

Branch command Meaning

BEQ Branch if equal

BNE Branch if not equal _ .
_ Building skills 1

BGT Branch if greater than

BGE Branch if greater or equal to This program branches if the value
_ in R2 is less than 15. Rewrite the

BLT Branch if less than program so that it branches if the

BLE Branch if less or equal to value in R2 is equal 10 0.

Chapter 8

Use branching to make a selection structure

A branch backwards makes the program repeat. That makes a loop.
Or you can branch forwards, jumping over some commands. That
creates a selection structure (similar to if... else).

For example, this program loads two numbers, adds them together
and saves the result to memory.

LDR RO, 110

LDR R1, 120

ADD R2, RO, R1

STR R2, 110

HALT

The next example shows the same program with a branch
command added. The branch command skips to the label ‘END" if
the two values are equal. It misses out the commands to add the
two values and store the result. The new lines are highlighted.

LDR RO, 110

LDR R1, 120

CMP RO, R1

BEQ END

ADD R2, RO, R1

STR R2, 110
END:

HALT

Building skills 2 l L ‘

Rewrite this program so that it skips to.the end if the value in R1 is less
than 0.

Write an assembly language program that loads two values from
memory locations 98 and 99, subtracts the smaller one from the larger
one, and_saves the result to memory location 100.

Test your understanding

What commana
How many operand ow the command CMP?

How is a label used in a branch command?

> @ b=

Which structure in a pseudocode program is similar to branching
backwards in an assembly language program?

Machine code and assembly language

You will be able to:

8.04 Understand and write
programs

Variables, values and calculations

In high-level languages, we use variables. Variables are names given
to data locations. Here is an example program written in pseudocode.
The variables are called X and V.

® write an assembly language
program to complete a task

® understand what an assembly
language program does

try out a program using an
online simulator.

X = 40
Y=Y + X
Y =Y — 30

Now let’s turn the program into assembly language. We will use
registers and memory locations to store the values. The ones'we
have chosen are shown in this table.

Variable Register | Memory location
X RO 99
Y R1 101

In the exam, they will tell you what registers.and data locations.to use.

Pseudocode | Discussion Assembly language

X =40 Use immediate addressing to move the value 40 into RO. MOV RO, #40
Store thé value to memory location 99. STR RO, 99
Y =Y + X | sedirect addressing to.get the value from memory location LDR R1, 101
107 into register R1.
Add X and'Y. The destination register is Y. ADD R1, R1, RO
Y = ¥i= 307" Subtract 30 from Y using immediate addressing. The SUB R1, R1, #30

destination registeris V.

Store Y back into memory location 107. STR R1, 101

End the program. HALT

You can see that a single line of pseudocode often matches two lines
of assembly language. One line loads or saves the value and another
line processes the value.

Building skills 1

Write an assembly language program to match
the following pseudocode program. Load and save
variables A and B using memory locations 81 and 82.

Use registers RO and R1 in your code.
A=A-—-17

B=A+A

Chapter 8

Programs with branching

Many programs include loops and selection structures. To copy
these structures in assembly language, you must use conditional
branching. Here is an example requirement.

Two values are stored in memory locations 50 and 51. Find the
largest of the two values and store it to location 55.

Let's go through the requirement and turn it into assembly language.
We will use RO and R1 to store the two values.

Key terms

Assembly language simulator: a
web page where you can enter an
assembly language program and
the program will run as if on a real
computer

Requirement Discussion Assembly language
Two values are stored in memory | Load the two values from the memory LDR ‘RO, 50
locations 50 and 51. locations to the registers. LDR R1, 51
Find the largest of the two values. | Compare the two values. CMP RO,R1
If the first value is greatef go toithe labél first. | BGT first
Otherwise, go to the label 'second'. B second
Store the largest value to location | Store the first value and skip to the end. first:
55. STR RO, 55
B end
Store the second value. second:
STR R1, 55
End the program. end:
HALT
Understand or éxplain a program Building skills 2

You may be given a program in-assembly language and asked to
explain what it does-or write pseudocode to match its actions. It

is a good idea to trace the assembly language program and see
what happens to the values in the registers as.you work through the
commands one by one.

Using a'simulator

Your programs are written in standard OxfordAQA assembly
language. This is not a real assembly language. You cannot run the
programs on your computer. Instead, you can trace them by writing
down the values in the registers after each line of the program.

There is another way to try out your programs. Clever and helpful
people have created online assembly language simulators. An
online simulator will run a program written in OxfordAQA assembly
language as if it were inside a computer. Peter Higginson has made
a very good simulator which you can use for free online at
https:/www.peterhigginson.co.uk/AQA.

Trace the program in the table
above. Show the contents of the
registers at each line. Assume that
the locations 50 and 51 hold the
values 100 and 200.

Machine code and assembly language

Assembly Language Registers

Main Memory (32 bit words as signed)

W e O

numbers

=]

INP RO, 2 PC
INP R1,2
ADD R2,R1,RO
oUT R2,4
HALT
// Output the sum of two

Incrementer

coocoooocoooo0O O

Control
Unit

Arithmetic
and Logic
Unit

Input
Output
RESET| [LOAD [aad +] [oPTIONS +]
[RU'NFSTEP your program, SELECT, LOAD or edit program]

000 -28514713

005
010
015
020
025
030
035
040
045
050
055
060
065
070
075
080
085
090
095
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195

0 1 2 3 4
-28514303 -528408576 -285073404 -285212672

@

D DO O DO D DO 000 0000000000000 0C000000OD A
000D OO0 0000000000000 0D00O

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

To use this simulator:

If this website is not available, carry out an online search for
'AQA assembly language simulator' to find other examples. Many

A Figure 8.4: Peter Higginson's AQA
assembly language simulator

Copy all the assembly language commands into the box on the

left of the screen and click-submit.

Put any starting values'into the numbered memory locations.

Click on the ‘run’ button (or ‘step’ to go through the program line

by line).

simulaters have minor limitations:

1.

If you want to put starting values in the registers, load them from

memory locations.

in all simulators.

This pseudocode command assigns a value to a
variable. You have to write assembly language to
match the command. What type of addressing
would you use?

age = 26

The result of a program is stored in R5. Write an
assembly language command to store this result
to memory location 100.

Building skills 3

Run the programs given in this
section using an online simulator.
If you have time, practice writing
and running more assembly

The conditional branching commands BGE and BLE do not work language programs.

Test your understanding

g8

A pseudocode program includes a structure that
begins with the key word while. What assembly
language technique would you use to match this
structure?

Two values are stored in registers R1 and R6. If the
two values are the same, the program must jump
to the label ‘start’. Write the assembly language
commands to make this happen.

Chapter 8

8.05 Bitwise operations
Working with binary values

Inside the computer, values are always stored in binary form. We do
not usually think too much about the binary numbers. We just work
with the values. But we can use assembly language commands to
make changes to the 1s and Os of binary numbers — the bits. These
are called bitwise operations.

Binary shift

Shifting the bits in a binary number to the left or right multiplies

or divides the number by a power of two. An assembly language
command called logical shift will do this task. There are two logical
shift commands:

Command | What it does Explanation

LSL Logical shift left | Multiplies a binary number by a
power of two

LSR Logical shift right | Divides a binary number by a
power of two

For example, the binary number 00100100 is stored in register RO.
That binary number has the value 36. This command will shift all the

bits in RO one place to the left. The destination register is R1.
LSL R1, RO, #1

After the command has run the registersdook like this.

RO R1 R2
00100100 (36) 4101001000.(72)

The bits have shifted one place to the left. This has multiplied the
number by two, giving a final value of 72.

Boolean operators

There is an assembly language command to match each Boolean
operator.

You will be able to:
® yse binary shift to multiply and
divide binary numbers

® perform bitwise operations
using Boolean operators.

Key tel

Bitwise operation: an assembly
language command that makes
changes to the bits in a binary data
value

Logical shift: an assembly
language command that shifts all
the'bits in a byte to the right or left

Building skills 1

Change the assembly language
command so that it divides the
same binary number by 4. Show
the values in the registers after
this command has run.

Boolean Output of the gate Operator in
operator assembly language
NOT Changes the value of each bit to its opposite MVN

AND True only if both input values are True AND

OR True if either or both input values are True ORR

XOR True if one input value is True and the other is False | EOR

Machine code and assembly language

The Boolean operators can be used to combine two binary numbers
to make a new binary number. In bitwise operations, we use 1 to
stand for True and 0 to stand for False.

In the following examples, we will use these two binary numbers
held in registers RO and R1.

RO R1 R2
01001010 | 01101001
NOT operator (MVN)

You have already learned that the move command MOV moves

a value from one register to another. An alternative is the ‘move
negative’ command MVN. This moves the value, but also swaps the
bits, so that every 1 becomes a 0, and every 0 becomes a 1.

Here is an example of a ‘'move negative’ command.
MVN R2, RO

After the command has run, the registers look like this.

RO R1 R2
01001010 | 01101001 | 10110101

The MVN command works like the Boolean NOT gate —it reverses
the value of each bit.

AND operator

Here is an example of an AND operation. The destination register
is R2.

AND R2, RO, R1

To see how this command works, put one binary number above
the othér and compare the bits in each.column. The number value
doesn't matter. In columns where both bits are 1, the result is 1.
There are only two places where both bits are 1. In all other cases
the result is 0.

Thetwovalues:0 1 000 1 0 1 0
01101001
The result 01001000

After this command has run, the registers look like this. The result is
inR2.

RO

R1

R2

01001010

011017001

010017000

Chapter 8

OR operator (ORR)

In assembly language, the OR operator is written as ORR. Let's look
at an example.

ORR R2, RO, R1

To see how this command works, put one binary number above the
other. In columns where there is at least one 1, the result is 1. In all
other columns the result is O.

Thetwovalues 0 1 0 01 0 1 0
01101001

The result

After this command has run, the registers look like this

01101011

RO

R1

R2

01001010

011017001

011017011

EXCLUSIVE-OR (EOR)

In assembly language, exclusive-OR is written asEOR. Let's ook at
an example.

EOR R2, RO, R1

In columns where the bits are different the result is 1. In all other
cases, theresultis 0.
Thetwovalues 0 1 0 0 1 041 0
01102001
The result 001000 21

After this command has run, the registers look like this.

RO R1 R2
01007010 | 01107007 | 00100011

Test your understanding

1. What is the mathematical effect of shifting the bits in a binary
number to the left?

EOR R2, RO, Rl

2. What assembly language command is equivalent in effect to the
Boolean NOT operator?

3. What is the difference between the assembly language operators
ORR and EOR?

4. RO holds 000070017 and R1 holds 00000001. What is the result of
the following command?

EOR R2, RO, R1

Key term

Exclusive-OR: a Boolean operator
which returns True if the values
of the two operands are different.
The logic gate is called XOR. In
assembly language, it is written
EOR

Building skills 2

Write an assembly language
program to load two binary
numbers from memory and
combine them using the bitwise
operators. Use a different
destination register for the result
of each operation.

Chapter 8 Revision and exam practice

Revision checklist

Can you do the following?

Instruction format (see pages 132-134)

O Understand the term ‘processor instruction set” and know that an instruction
set is processor specific.

O Know that instructions consist of an opcode, an addressing moede and one or
more operands (value, memory address or register).

O Know that the format of an instruction, in machine code or assembly language,
may be dependent on the type of instruction.

O Understand and apply immediate, direct and indirect addressing modes.

O Know that in machine code instructions are expressed in binary and that in
assembly language they are expressed as.mnemonics.

Assembly language programming (see pages 135-146)

O Understand and apply the basic operations of:

e |oad

e add

e subtract
® store

e pbranching(conditional and unconditional)
e’ compare
® |ogical bitwise operators (AND, OR, NOT, XOR)

® |ogical
e shift right
e shift left
e halt.

O Use the basic operations above to write, trace and reason about assembly
language programs using immediate, direct and indirect addressing modes.

Revision and exam practice

Practice exam questions

1. Consider this assembly language program.

MOV RO, #0
MOV R3, #0

LDR R1, 98
LDR R2, 99

loop:

ADD R3, R3, Rl
ADD RO, RO, #1
CMP RO, R2

BLT loop

STR R3, 98

HALT

a) State the name of the addressing mode of the final operand
in the instruction

ADD RO, RO, #1 (1 mark)

b) Memory location 98 holds the number 11."Memoary location
99 holds the number 2. Complete the trace table to show
how the contents of the memory locations and registers

change when the program is executed. (4 marks)
Memory locations Registers
98 99 RO R1 R2 R3
11 2
c) State the purpose of the program. (2 marks)

d) A programmer considered using the single bitwise opcode
LSL instead of this program. Contrast the two approaches
and explain any advantages or limitations of each approach.

(4 marks)

2. This algorithm comparestwo positive integers X and Y and
subtracts the smaller.from the larger.

IF X < Y THEN

Z =Y —X
ELSE
Z =X —-Y

Revision and exam practice

a) Write an assembly language program, using the AQA
assembly language instruction set, to implement this
algorithm:

e | oad the values of X and Y from memory locations 55 and
56.

e Compare the values and subtract as shown in the
algorithm.

e Store the result Z to memory location 99.

e You may use any numbered registers to hold the values
as the program runs. (6 marks)

b) The program has been written in assembly language. You
could also write the program in machine code, or in a high-
level language. Discuss the advantages and disadvantages
of writing a program in assembly language compared to the
alternatives. (4 marks)

The exam paper will include a list
of all the commands from standard
OxfordAQA assembly language.
You willfind.this list on page 370.
Goodunderstanding of assembly
language will help you to make
effective use of the list. The list
uses termssuch as ‘operand’ and
‘bitwise’, so you need to remember
and understand what these terms
mean. The list will be a big help as
you write assembly language code
in the exam.

Oxford Resources for
OxfordAQA: Evaluation

Access free online evaluation of
our resources, to ensure they suit
you and your students.

Get support from your local Educational Consultant
www.oxfordsecondary.com/contact-us

Evaluate online
www.oxfordsecondary.com/evaluate-oxfordaga

Place an order
Call: +44 (0)1536 452620
Email: schools.orders.uk@oup.com

Find out more
www.oxfordsecondary.com/oxfordaqga

Extended
Project
Qualification

Visit the

webpage

