

Introduction

How to use this book

Unit 1: Programming

Chapter 1: Procedural programming

Chapter 2: Fundamental data structures

Chapter 3: Program design

Chapter 4: Searching and sorting algorithms

Unit 2: Concepts and principles of
computer science

Chapter 5: Representing data

Chapter 6: Computer systems

Chapter 7: Computer organisation and
architecture

Chapter 8: Machine code and assembly
language 132

8.01 Assembly language 132

8.02 Commands in assembly language 135

Chapter 8 Revision and exam practice 147

Unit 3: Advanced programming

Chapter 9: Object-oriented and additional
programming

Chapter 10: Advanced data structures

Chapter 11: Advanced algorithms

Chapter 12: Functional programming

Unit 4: Advanced concepts and principles
of computer science

Chapter 13: Theory of computation

Chapter 14: Networking and cyber security

Chapter 15: Databases

Exam skills

Glossary

Index

7

Contents

AAARARARADDD
 assem

32

ge 132ge

n assembly language 135assembly language 135

hapter 8 Revision and exam practice hapter 8 Revision and exam practice

: Advanced program

Object-orientbject orie

TTTFTFTFT
ng

abases

skills

Glossary

Index

132

Chapter 8

Instruction set: the binary number
codes that stand for actions a
processor can execute
Processor instruction set: the
instruction set of a particular
processor.
Machine code: a program made
of instruction codes that can be
understood by the processor
Assembly language: a
programming language that uses

binary instruction codes
Mnemonic: easy to remember

•
language is

• describe the format of an
assembly language instruction

•
operand.

Objectives

Key terms

Controlling the computer with
instruction codes

8.01 Assembly language

You have learned about the fetch–execute cycle. The processor
fetches instruction codes from RAM and then executes them
(carries them out). A list of all the instruction codes that a computer
understands is called the instruction set of that computer.

Instruction codes are binary numbers. Each binary number tells the
computer to do a different action. Every type of processor has its

processor instruction set
The same binary number can mean different things in different
computers.

▲ Figure 8.1: A machine code instruction is decoded and executed

◀ Figure 8.2: The mnemonic codes of
assembly language can be converted
directly into the binary numbers of
machine code

A program that is made up of binary instruction codes is called a
machine code

a program using number codes. Instead, programs are almost

machine code.

Mnemonic letter codes
assembly

language. It is very similar to machine code. But instead of using

mnemonic codes.

The mnemonic codes of assembly language exactly match the
binary number codes of the instruction set.

0110 1000
Add 2

numbers

Computer actionInstruction code

0110 1000

Computer actionInstruction code

ADD

Mnemonic code

Add 2
numbers

Unit 2
Chapter 8

Machine code and
assembly language

DR
AF
T

AF
TInstru

cod
proc
Process
nstructio

cess
Mac
o

FT
ge is

cribe the
ssembly la

operand.

FTey term
s s

erent nt

n is decoded and executedn is decoded and executed

nary instruction codes is called a nary instruction codes is calle

mber codes. Instead, programs are almes. Instead, programs are alm

monic letter codesmonic letter cod

A
s very similar to machines very similar to machi

Abersers

mputer actionction

133

Machine code and assembly language

There are different versions of assembly language. Each one uses

version called standard OxfordAQA assembly language.

Low-level languages
Machine code and assembly language are called low-level
languages

very similar to the actual codes the processor uses. This gives you

The assembly language used by OxfordAQA is based on the machine

processor is.

Building skills 1

Operator and operands

• An operator

opcode.

• The operand(s) are the data that has to be processed.

The operands are fetched at the same time as the instruction during
the fetch–execute cycle.

5+6 11

Result of operation

result has to be saved. The result is typically saved into a register.
A register is a small area of memory inside the processor. The
registers are numbered (for example, from 0 to 12). The register

destination register.

▲ Figure 8.3: Each instruction consists of an operator and some operands

Low-level language: a language

registers and memory locations of
a computer
Operator: the part of a command

process to carry out
Opcode: the operator in an
assembly language command
Operand: the part of an instruction

to process
Destination register: a numbered
register used in an instruction,
usually to store the result

Key terms

DR
AF
Tchinechine

AF
TFT

s)s) are the data that has to be processe are the data that has to be processe

s are fetched at the same time as the ed at the same time as the
execute cycle.execute cyc

DDRD5+6DRDRDDDEach instructioEach instructio

FT
cess to ca

Opcode:
assembly
Operand: the

ss
register: a

n an instr
usually to store the r

134

Chapter 8

Addressing mode
You have seen that most instructions include operands. That is the

Immediate addressing: The operand is the actual data you want
to use (like in the picture).

Direct addressing: The operand is a register or address where
the data is stored.

Indirect addressing: The operand is a register, which holds
another address where the data is stored (so it takes two steps

addressing
modes.

Structure of an assembly language
instruction

opcode

destination register

addressing mode

operands.

Not all instructions have exactly this structure. Some commands do

Building skills 2

1.
program in assembly language
than in machine code?

2. What is the purpose of the
destination register?

3. Describe the difference

operand.

4. Explain the three modes of
addressing used in assembly
language.

Test your understanding

Addressing mode:
of stating the operands in an
assembly language instruction.
Immediate addressing means
providing the actual data. Direct
addressing means giving the

Key term

DR
AF
T

bly language guage

ster

modemode

ds.ds.

structions hastructions ve exactly this structy this

AFAFAA
T

135

Machine code and assembly language

8.02 Commands in assembly
language
Loading and storing data
Each register holds only one data value. When a program runs, the
computer loads
changes to the data, and then stores

In OxfordAQA assembly language there are 13 registers. Registers
are numbered from R0 to R12. Memory locations are numbers

registers and memory locations to use.

LOAD command
The command to load gets data from a memory location and puts it

the opcode LDR

the destination register, Rd (where the data goes to)

the memory location (where the data comes from).

LDR Rd, location

Here is an example. To load data from memory location 99 into

LDR R0, 99

is held, this is called direct addressing. That is the only type of
addressing the load command can use.

Some commands can also use immediate addressing. There is

STORE command
The command to store data has this structure. It stores data from
the destination register to a memory location.

STR Rd, location

Here is an example. This command stores the data from register R6
in memory location 23.

STR R6, 23

Once again, this is an example of direct addressing. That is the only

You can load and store data to a numbered register instead of a

R. That tells you that it is a register. This is also an example of direct
addressing.

Load: a value is copied from
computer memory to the
destination register (using direct
addressing)

• load and save data using
assembly language
commands

• carry out simple calculations
using assembly language
instructions.

Objectives

Key term

DR
AF
Ton and puts it on and pu

ata goes to)ata goe

a comes from).comes from).

o load data from memory location 99 io load data from memory location

9

his is called direct addressing. That is his is called direct addressing
ssing the load command can use.ssing the load command can use.

ome commands can also use immediome commands can also use immedi

RE commandRE command
d to store dad to store da

registeregiste

FT
alue is cop

emory to th
ster (us

ad TT
g

struct

FT
Key term

136

Chapter 8

MOVE data between registers
A different command moves

MOV Rd, operand

the registers you need to use, and the data that they hold. In this
example, R3 holds the data value 16.

R0 R1 R2 R3 R4

16

16’. Here is an example command.

MOV R0, R3

The command moves data to R0 from R3. The data is copied

R0 R1 R2 R3 R4

16 16

All these commands use direct addressing. The operands are

memory location.

Immediate addressing
Move operations can also use immediate addressing. That means
you give the exact data value rather than a numbered location
or register. A # symbol in front of the data value tells you it is
immediate addressing. Here is an example.

MOV R6, #590

Move the number 23 into register 2.

Move data to register 0 from register 2.

Store data from register 0 to memory location 99.

Building skills 1

Store: a value is copied from the
destination register to computer
memory (using direct addressing)
Move: a data value is copied into
the destination register (using
immediate or direct addressing)

Key terms

DDR
AF
T

 The operands areperands are

dressingdressi
n also use immediate addressing. Thae immediate addressing. Tha

ct data value rather than a numbered lot data value rather than a
symbol in front of the data value tells# symbol in front of the data va

addressing. Here is an example.addressing. Here is an example.

R6, #590R6, #5 DD1

T

137

Machine code and assembly language

Carrying out calculations
We can add and subtract data values using assembly language

ADD – add two operands and save the result in the destination
register.

SUB – subtract one operand from another and save the result in
the destination register.

These commands have this structure. Remember that Rd means

ADD Rd, operand 1, operand 2

SUB Rd, operand 1, operand 2

For example, this command adds the value in register 3 to the value
in register 4 and stores the result in register 0.

ADD R0, R4, R3

We can use immediate addressing for the second operand. For
example, this command subtracts the value 70 from the value in
register 4. The result is put into register 6.

SUB R6, R4, #70

Trace the registers

You can also trace
can trace the effect of each command on the registers. Some exam

the starting values.

R0 R1 R2 R3 R4

7 8

Here is an assembly language command.

ADD R2, R0, R1

R0 R1 R2 R3 R4

7 8 15

Move the number 99 into R1.

Add the number 23 to the value in R1 and put the result in R0.

Store the value in R0 to memory location 55.

Building skills 2
The registers of a computer are

Memory location 100 holds the
data value 6.

R0 R1 R2 R3 R4

1.
registers after this command
is carried out.

 LDR R0, 100

2.
registers change after this
additional command is carried
out.

 MOV R1, #99

3.
registers change after this
additional command is carried
out

 ADD R2, R1, R0

4. What value is stored in
data location 100 after this
command is carried out?

 STR R2, 100

Test your understanding

Trace (assembly language):

and numbered memory locations

step by step

Key term

Multiplication and division can be
carried out using a binary shift
operator (see section 8.05).

Synoptic link

he valuehe value

d operand. For d. For
0 from the value in e in

ace the registersace the registers

u can also u can als trace
race the effect of each commrace the effect of each co

g values.g values.DDDDR2R2
99 into R1.99 into R

ber 23 to the value in R1 and put the rer 23 to the value in R1 and put the resuesu

e value in R0 to memory location 55.R0 to memory location 55.

DR
ARA
FFTeFT

ion and div
sing a bina

operator (see section 8FT
Synoptic lin

138

Chapter 8

The program counter
An assembly language program is a series of commands. As the
program runs, the program counter counts through the lines of the
program one by one. Each line is carried out and then the program
counter moves on to the next line.

You can control the program counter using assembly language

You can stop the program counter with the HALT command.

the program. This is called branching.

Branching

Branch backwards: this can make the program go back and
repeat some lines, like a loop in pseudocode.

Branch forwards: this can make the program miss out some
lines, like a selection structure in pseudocode.

We put labels

label is.

value in memory location 99.

MOV R0, #1

LDR R1, 99

ADD R2, R1, R0

STR R2, 99

HALT

are highlighted.

MOV R0, #1

MYLABEL:

LDR R1, 99

ADD R2, R1, R0

STR R2, 99

B MYLABEL

HALT

• use conditional branching
•

using assembly language.

Objectives

Branching: an assembly language

Label:

to jump to

Key terms

am go back and am go back and
ode.

program miss out someiss out some
seudocode.

tion 99.9

9999

2, R1, R02, R1,

R2, 99R2, 99

FT
nching: an assTLab

mp T
ms

139

Machine code and assembly language

When the program reaches the command

B MYLABEL

Conditional branching
Most programs that include branching use conditional branching.
That means the branching is controlled by a logical comparison,
using a relational operator. The command CMP tells the computer to

 CMP R2, #15
This compares the value in R2 to the number 15. The result of the
comparison is used in the next branch command. For example, BLT

 BLT MYLABEL

MOV R0, #1

MYLABEL:

LDR R1, 99

ADD R2, R1, R0

STR R2, 99

CMP R2, #15

BLT MYLABEL

HALT

can use.

Branch command Meaning

BEQ Branch if equal

BNE Branch if not equal

BGT Branch if greater than

BGE Branch if greater or equal to

BLT Branch if less than

BLE Branch if less or equal to

This program branches if the value

program so that it branches if the
value in R2 is equal to 0.

Building skills 1

Conditional branching: a branch
command that depends on the

Key terms

DDDDR
AF
Ter to er to

result of the esult of
For example, BLT xample, BLT

use.use. DDDDDDcommand M

140

Chapter 8

Use branching to make a selection structure

creates a selection structure (similar to if… else).

and saves the result to memory.

LDR R0, 110

LDR R1, 120

ADD R2, R0, R1

STR R2, 110

HALT

LDR R0, 110

LDR R1, 120

CMP R0, R1

BEQ END

ADD R2, R0, R1

STR R2, 110

END:

HALT

than 0.

memory locations 98 and 99, subtracts the smaller one from the larger
one, and saves the result to memory location 100.

Building skills 2

1. What command stops a program?

2.

3.

4. Which structure in a pseudocode program is similar to branching

Test your understandingDnd stops a progDR
A

cations 98 and 99, subtracts the smaller ocations 98 and 99, subtracts the smalle
d saves the result to memory location 100d saves the result to memory location 100DR
AF
T

RARADDunderstanding

141

Machine code and assembly language

8.04 Understand and write
programs
Variables, values and calculations

The variables are called X and Y.

X = 40

Y = Y + X

Y = Y – 30

Variable Register Memory location

X R0 99

Y R1 101

Pseudocode Discussion Assembly language

X = 40 Use immediate addressing to move the value 40 into R0. MOV R0, #40

Store the value to memory location 99. STR R0, 99

Y = Y + X Use direct addressing to get the value from memory location
101 into register R1.

LDR R1, 101

Add X and Y. The destination register is Y. ADD R1, R1, R0

Y = Y – 30 Subtract 30 from Y using immediate addressing. The
destination register is Y.

SUB R1, R1, #30

STR R1, 101

End the program. HALT

of assembly language. One line loads or saves the value and another
line processes the value.

Write an assembly language program to match

variables A and B using memory locations 81 and 82.

Use registers R0 and R1 in your code.

A = A – 7

B = A + A

Building skills 1

•

•
language program does

• try out a program using an
online simulator.

Objectives

DR
AF
T

AAAARAADDDDDR
ARARADDRDRDDRDDD

diate addressing to move the value 40diate addressing to move the v

the value to memory location 99.the value to memory location 99.

se direct addressing to get the value fe direct addressing to get the value f
101 into register R1.into register R1.

Add X and Y. The destination regAdd X and Y. The d

Y – 30Y – 30 Subtract 30 from Y using imSubtract 30 from Y usin
destination register is Y.stination register is Y.

End the prograEnd the prog

nguage. nguage.
e vae va

T
out

nline si

142

Chapter 8

Programs with branching
Many programs include loops and selection structures. To copy
these structures in assembly language, you must use conditional
branching. Here is an example requirement.

Let’s go through the requirement and turn it into assembly language.

Requirement Discussion Assembly language

locations 50 and 51. locations to the registers.
LDR R0, 50

 LDR R1, 51

 CMP R0,R1

Store the largest value to location
55. STR R0, 55

 B end

Store the second value.
 STR R1, 55

End the program. end:
 HALT

Understand or explain a program

is a good idea to trace the assembly language program and see

commands one by one.

Using a simulator

language. This is not a real assembly language. You cannot run the

people have created online assembly language simulators. An

Trace the program in the table

registers at each line. Assume that
the locations 50 and 51 hold the
values 100 and 200.

Building skills 2

Assembly language simulator: a

assembly language program and

computer

Key terms

DR
AF
TTFTFTFTFTF

R
FTFTFTFTAF
TFTAFFAFRARRA
TTTTTAssem

LDR R0, 50LDR R
 LDR R1, 51LDR R1,

 CMP R0,R1R0,R1

e the second value.ond va

End the program.End the program.

or explain a programexplain a program

to traceto trace the assembly language progrthe assembly language

nds one by one.nds one b

a simulatora simulator

t a real asset a real asse

143

Machine code and assembly language

Run the programs given in this
section using an online simulator.

and running more assembly
language programs.

Building skills 3

1. This pseudocode command assigns a value to a

match the command. What type of addressing

age = 26

2. The result of a program is stored in R5. Write an
assembly language command to store this result
to memory location 100.

3. A pseudocode program includes a structure that

structure?

4.

Test your understanding

▲ Figure 8.4: Peter Higginson’s AQA
assembly language simulator

Copy all the assembly language commands into the box on the
left of the screen and click submit.

Put any starting values into the numbered memory locations.

Click on the ‘run’ button (or ‘step’ to go through the program line
by line).

If you want to put starting values in the registers, load them from
memory locations.

The conditional branching commands BGE and BLE do not work
in all simulators.DDDnderstaDR
AF
T

AF▲▲▲uage commands into the box on the ds into the box on the
k submit.k submit.

es into the numberes into the numb ed memory locationemory l

’ button (or ‘step’ to go thr’ button (or ‘step’ to ough the prh the p

If you want to put starting values in If you want to put starting values in
memory locations.memory

he conditional branching cohe conditional branching
simulators.simulator

144

Chapter 8

8.05 Bitwise operations
Working with binary values

are called bitwise operations.

Binary shift
Shifting the bits in a binary number to the left or right multiplies

command called logical shift

Command What it does Explanation

LSL Logical shift left Multiplies a binary number by a

LSR Logical shift right Divides a binary number by a

For example, the binary number 00100100 is stored in register R0.

bits in R0 one place to the left. The destination register is R1.

LSL R1, R0, #1

R0 R1 R2

00100100 (36) 01001000 (72)

The bits have shifted one place to the left. This has multiplied the

Boolean operators
There is an assembly language command to match each Boolean
operator.

Boolean
operator

Output of the gate Operator in
assembly language

NOT Changes the value of each bit to its opposite MVN

AND True only if both input values are True AND

OR True if either or both input values are True ORR

XOR True if one input value is True and the other is False EOR

Change the assembly language
command so that it divides the

the values in the registers after
this command has run.

Building skills 1

• use binary shift to multiply and
divide binary numbers

•
using Boolean operators.

Objectives

Bitwise operation: an assembly

changes to the bits in a binary data
value
Logical shift: an assembly
language command that shifts all
the bits in a byte to the right or left

Key terms

DR
AF
TFAFAFAFAFFFF

umber by a y a

ary number by a ary number

00 is stored in register R0. d in register R0.

destination register is R1.destination register is R1.

DRDDRRDDRDRRRDRRDRDR
R2

) 01001000 (72)) 01001000 (7

have shifted one place to the left. Thishave shifted one place to the left. This

 operators operators
bly language cbly language c

FT
wise operation:

changes to the bits in a b
val

sembly
uage command that shiftThe bits in a byte to the righT

rms

145

Machine code and assembly language

stand for True and 0 to stand for False.

held in registers R0 and R1.

R0 R1 R2

01001010 01101001

NOT operator (MVN)
You have already learned that the move command MOV moves

negative’ command MVN
bits, so that every 1 becomes a 0, and every 0 becomes a 1.

MVN R2, R0

R0 R1 R2

01001010 01101001 10110101

the value of each bit.

AND operator
Here is an example of an AND operation. The destination register
is R2.

AND R2, R0, R1

the other and compare the bits in each column. The number value

the result is 0.

0 1 0 0 1 0 1 0

0 1 1 0 1 0 0 1

The result 0 1 0 0 1 0 0 0

in R2.

R0 R1 R2

01001010 01101001 01001000

DDDR
AF
T

D
AA of an AND operation. The destinationof an AND operation. The destination

, R0, R1

ther and compare the bits in each coluther and compare the bits in each c

result is 0.result is 0

0 1 0 0 1 0 1 0 0 1

0 1 1 00 1 1 0

0 1

146

Chapter 8

OR operator (ORR)
ORR

at an example.

ORR R2, R0, R1

other columns the result is 0.

0 1 0 0 1 0 1 0

0 1 1 0 1 0 0 1

The result 0 1 1 0 1 0 1 1

R0 R1 R2

01001010 01101001 01101011

EXCLUSIVE-OR (EOR)
In assembly language, exclusive-OR EOR
an example.

EOR R2, R0, R1

cases, the result is 0.

0 1 0 0 1 0 1 0

0 1 1 0 1 0 0 1

The result 0 0 1 0 0 0 1 1

R0 R1 R2

01001010 01101001 00100011

Write an assembly language

numbers from memory and

operators. Use a different
destination register for the result
of each operation.

Building skills 2

1. What is the mathematical effect of shifting the bits in a binary
number to the left?

EOR R2, R0, R1

2. What assembly language command is equivalent in effect to the
Boolean NOT operator?

3.
ORR and EOR?

4. R0 holds 00001001 and R1 holds 00000001. What is the result of

EOR R2, R0, R1

Test your understanding

Exclusive-OR: a Boolean operator

The logic gate is called XOR. In

EOR

Key term

146

DR
AF
T

DR
EOREOR

 1 0 1 0

1 0 0 11 0 0

0 0 1

DRDDRDRDDRDRDRDRDDRDRDDRDR
R1 R2

0 01101001 001000110 01101001 001000

AA
Dmathematical effec

eft?

R1Dr underst

T

147

Machine code and assembly language

Revision checklist

Chapter 8 Revision and exam practice

⧠

⧠ Know that instructions consist of an opcode, an addressing mode and one or
more operands (value, memory address or register).

⧠ Know that the format of an instruction, in machine code or assembly language,
may be dependent on the type of instruction.

⧠ Understand and apply immediate, direct and indirect addressing modes.

⧠ Know that in machine code instructions are expressed in binary and that in
assembly language they are expressed as mnemonics.

Instruction format (see pages 132–134)

⧠

load

add

subtract

store

branching (conditional and unconditional)

compare

logical bitwise operators (AND, OR, NOT, XOR)

logical

shift right

shift left

halt.

⧠
language programs using immediate, direct and indirect addressing modes.

Assembly language programming (see pages 135–146)

147

DR
A

branching (conditional and

compare

se operators (AND

logi

shift right

shift left

AF
Tmode and one or

ode or assembly

ct addressing mod

n binary a
 as mn

AF
TT

RA
Fages 135–146)

148

Chapter 8

Practice exam questions
1. Consider this assembly language program.

 MOV R0, #0

 MOV R3, #0

 LDR R1, 98

 LDR R2, 99

 loop:

 ADD R3, R3, R1

 ADD R0, R0, #1

 CMP R0, R2

 BLT loop

 STR R3, 98

 HALT

a)
in the instruction

ADD R0, R0, #1 (1 mark)

b) Memory location 98 holds the number 11. Memory location

(4 marks)

98 99 R0 R1 R2 R3

11 2

c) State the purpose of the program. (2 marks)

d) A programmer considered using the single bitwise opcode
LSL instead of this program. Contrast the two approaches
and explain any advantages or limitations of each approach.
 (4 marks)

2.
subtracts the smaller from the larger.
IF X < Y THEN

 Z = Y – X

ELSE

 Z = X – Y

ENDIF

148

Revision and exam practice

DR
AF
T

 Memory location

(4 marks

RADR
ARRARARAARRRARRARARRRRARRARARAARRDRRDRRRRRDRDRDRRRR
ARAARA

R
R3R0 R1

 purpose of the program.

ogrammer considered using the sing
SL instead of this program. Contrast th

and explain any advantages or limitat

smaller from the
N

149

Machine code and assembly language

a) Write an assembly language program, using the AQA
assembly language instruction set, to implement this

Load the values of X and Y from memory locations 55 and
56.

Compare the values and subtract as shown in the
algorithm.

Store the result Z to memory location 99.

You may use any numbered registers to hold the values
as the program runs. (6 marks)

b)

level language. Discuss the advantages and disadvantages

alternatives. (4 marks)

Revision and exam practice

of all the commands from standard
OxfordAQA assembly language.

Good understanding of assembly

effective use of the list. The list

in the exam.

149

DR
AF
Tntages

(4 m FT
QA

od unders

effective u

inFT

